Using activated carbon as bioadsorvent for the residual waters treatment: a review

Authors

  • Lucélio Mendes Ferreira luceliomonteiro@yahoo.com.br
    Federal University of Paraíba, Center of Human, Social, and Agricultural Sciences, Bananeiras, PB, Brazil. https://orcid.org/0000-0001-7536-9433
  • Rafael Rodolfo de Melo rafael.melo@ufersa.edu.br
    Federal Rural University of the Semi-Arid Region, Center of Agricultural Sciences, Mossoró, RN, Brazil. https://orcid.org/0000-0001-6846-2496

DOI:

10.31413/nativa.v9i2.11387

Keywords:

Contaminants, Environmental management, Industrial Effluents

Abstract

The adsorption is one of the technologies most used in the removal of contaminants from water and has been gaining prominence. In the treatment of effluents, activated carbon adsorption (AC) is an efficient method. The main advantage of CA production is the use of waste that would often be discarded inappropriately. The purpose of this article is to organize some available information regarding the potential coal of activated carbon as bioadsorbent. Periodic research was carried out on the production of activated carbon with adsorptive characteristics, in the removal of contaminants in wastewater. The effectiveness of this technique under different parameters influences the adsorption process, such as: pH of the solution, initial concentration of the dye, contact time, amount of adsorbent and temperature. The adsorption isotherms of Langmuir, Freundlich and BET models (Brunauer, Emmett and Teller) are generally used to evaluate the adsorption capacity of bioadsorants. In all the articles studied charcoal characteristics as bioadsorbents have shown to be promising in the process of removal of waste water pollutants. It is concluded that the adsorption isotherms of Langmuir, Freundlich and BET are often used to evaluate the adsorption capacity of the activated carbon.

References

ABDEL-GHANI, N. T.; EL-CHAGHABY, G. A.; RAWASH, E. A.; LIMA, E. C. Adsorption of coomassie brilliant blue r-250 dye onto novel activated carbon prepared from Nigella sativa L. Waste: Equilibrium, kinetics and thermodynamics running title: adsorption of brilliant blue dye onto Nigella sativa L. Waste activated carbon. Journal of the Chilean Chemical Society, Concepción, v. 62, n. 2, p. 3505- 3511, 2017. DOI: 10.4067/S0717-97072017000200016

AMIN, N. K. Removal of reactive dye from aqueous solutions by adsorption onto activated carbon prepared from sugarcane bagasse pith. Desalination, Amsterdam, v. 223, n. 1-3, p. 152-161, 2008. DOI: 10.1016/j.desal.2007.01.203

ISLAM, M. D. A.; AHMED, M. J.; KHANDAY, W. A.; ASIF, M.; HAMMEED, B. H. Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal. Ecotoxicology and Environmental Safety, New York, v. 138, n. 1, p. 279-285, 2017. DOI: 10.1016/j.ecoenv.2017.01.010

BANDOSZ, T. J. Activated carbon surfaces in environmental remediation. New York: Elsevier, 2006. 571 p.

BAZRAFSHAN, E.; AMRIAN, P.; MAHVI, A. H.; ANSARI-MOGHADDAM, A. Application of adsorption process for phenolic compounds removal from aqueous environments: a systematic review. Global NEST Journal, Lesbos, v. 18, n. 1, p. 146-163, 2016. DOI: 10.30955/gnj.001709

BORGES, W. M. S.; CASTRO, G. M. M.; BIANCHI, M. L.; NOBRE, J. R. C.; RESENDE, E. C.; CASTRO, J. P.; GUERREIRO, M. C. Produção, caracterização e avaliação da capacidade adsortiva de carvões ativado em forma de briquete. Matéria, Rio de Janeiro, v. 21, n. 4, p. 930-942, 2016. DOI: 10.1590/s1517-707620160004.0086

BOUCHELTA, C.; MEDJRAM, M. S.; BERTRAND, O.; BELLAT, J. P. Preparation and characterization of active carbon from date stones by physical activation with steam. Journal of Analytical and Applied Pyrolysis, Amsterdam, v. 82, n. 1, p. 70-77, 2008. DOI: 10.1016/j.jaap.2007.12.009

DABROWSKI, A.; PODKOSCIELNY, P.; HUBICKI, Z.; BARCZARK, M. Adsorption of phenolic compounds by activated carbon-a critical review. Chemosphere, Oxford, v. 58, n. 8, p. 1049-1070, 2005. DOI: 10.1016/j.chemosphere.2004.09.067

DI BERNARDO, L.; DANTAS, A. D. B. Métodos e técnicas de tratamento de água. 2 Ed. São Carlos: Rima, 2005. 1565 p.

DIZBAY-ONAT, M.; VAIDYA, U. K.; LUNGUC, C. T. Preparation of industrial sisal fiber waste derived activated carbon by chemical activation and effects of carbonization parameters on surface characteristics. Industrial Crops and Products, Parlier, v. 95, n. 1, p. 583-590, 2017. DOI: 10.1016/j.indcrop.2016.11.016

GIMENEZ, I. F.; FERREIRA, O. P.; ALVES, O. L. Desenvolvimento de ecomateriais: materiais porosos para aplicação em Green Chemistry. Campinas: UNICAMP, 2014. 17 p.

GORGULHO, H. F.; MESQUITA, J. P.; GONÇALVES, F.; PEREIRA, M. F. R.; FIGUEIREDO, J. L. Characterization of the surface chemistry of carbon materials by potentiometric titrations and temperature-programmed desorption. Carbon, Oxford, v. 46, n. 12, p. 1544-1555, 2008. DOI: 10.1016/j.carbon.2008.06.045

HAO, W.; BJÖRNERBÄCK, F.; TRUSKINA, Y.; BENGOECHEA, M. O.; SALAZAR-ALVAREZ, G.; BARTH, T.; HEDIN, N. High-performance magnetic activated carbon from solid waste from lignin conversion processes. 1. Their use as adsorbents for CO2. ACS Sustainable Chemical Engineering, Austin, v. 5, n. 4, p. 3087-3095, 2017. DOI: 10.1021/acssuschemeng.6b02795

JUNG, K. W.; CHOI, B. H.; HWANG, M.; JEONG, T.; AHN, K. Fabrication of granular activated carbons derived from spent coffee grounds by entrapment in calcium alginate beads for adsorption of acid orange 7 and methylene blue. Bioresource Technology, Essex, v. 219, n. 17, p. 185-195, 2016. DOI: 10.1016/j.biortech.2016.07.098

KUMAR, K. V.; SIVANESAN, S. Pseudo second order kinetics and pseudo isotherms for malachite green onto activated carbon: Comparison of linear and non-linear regression methods. Journal of Hazardous Materials, Amsterdam, v. 136, n. 3, p. 721-726, 2006. DOI: 10.1016/j.jhazmat.2006.01.003

LEITE, N. S.; SILVA, R. R.; MARQUES, J. J.; TAMBOURGI, E. B.; SILVA, G. F.; SILVA, M. S. Hydrocarbon removal from aqueous wastewater using activated carbon from Casuarina equisetifolia cones. Scientia Plena, Aracaju, v. 13, n. 07, p. 1-12, 2017. DOI: 10.14808/sci.plena.2017.074201

LOPES, N. P.; QUEIROZ, M. E. L. R.; NEVES, A. A. Influência da matéria orgânica na adsorção do fungicida Triadimenol pelo solo. Química Nova, São Paulo, v. 25, n. 4, p. 544-547, 2002. DOI: 10.1590/S0100-40422002000400006

MOHAN, D.; PITTMAN JR, C. Activated carbons and low cost adsorbents for remediation of tri and hexavalent chromium from water. Journal of Hazardous Materials, Amsterdam, v. 137, n. 2, p.762-811, 2006. DOI: 10.1016/j.jhazmat.2006.06.060

MORALI, U.; DEMIRAL, H.; ŞENSÖZ, S. Optimization of activated carbon production from sunflower seed extracted meal: Taguchi design of experiment approach and analysis of variance. Journal of Cleaner Production, Amsterdam, v. 186, p. 1-44, 2018. DOI: 10.1016/j.jclepro.2018.04.084

NAEEM, M. S.; JAVED, S.; BAHETI, V.; WIENER, J.; JAVED, M. U.; HASSAN, S. Z. U.; MAZARI, A.; NAEEN, J. Adsorption kinetics of acid red on activated carbon web prepared from acrylic fibrous waste. Fibers and Polymers, Seoul, v. 19, n. 1, p. 71-81, 2018. DOI: 10.1007/s12221-018-7189-5

NOWROUZI, M.; BEHIN, J.; YOUNESI, H.; BAHRAMIFAR, N.; CHARPENTIER, P.A.; ROHANI, S. An enhanced counter-current approach towards activated carbon from waste tissue with zero liquid discharge. Chemical Engineering Journal, Lausanne, v. 326, n. 15, p. 934-944, 2017. DOI: 10.1016/j.cej.2017.05.141

PEREIRA, E. I. Production of activated carbon from different precursors using FeCl3 as an activator agent. 2010. 72 f. Dissertation (Master in Agrochemistry) – Universidade Federal de Lavras, Lavras.

POBLETE, R.; OLLER, I.; MALDONADO, M. I.; LUNA, Y.; CORTES, E. Cost estimation of COD and color removal from landfill leachate using combined coffee-waste based activated carbon with advanced oxidation processes. Journal of Environmental Chemical Engineering, Amsterdam, v. 5, n. 1, p. 114-121, 2017. DOI: 10.1016/j.jece.2016.11.023

SELVARAJU, G.; ABUBAKAR, N. K. Production of a new industrially viable green-activated carbon from Artocarpus integer fruit processing waste and evaluation of its chemical, morphological and adsorption properties. Journal of Cleaner Production, Amsterdam, v. 141, n. 10, p. 989-999, 2017. DOI: 10.1016/j.jclepro.2016.09.056

SOUZA, L. A. Filtração por carvão ativado. Disponível em: https://mundoeducacao.bol.uol.com.br/quimica/filtracao-por-carvao-ativado.htm. Acesso em: 28 de nov, 2018.

UTRILLA, J. R.; SÁNCHEZ-POLO, M.; GÓMEZ-SERRANO, V.; ÁLVAREZ, P. M.; ALVIM-FERRAZ, M. C. M.; DIAS, M. Activated carbon modifications to enhance its water treatment applications. Journal of Hazardous Materials, Amsterdam, v. 187, n. 1-3, p. 1-23, 2011. DOI: 10.1016/j.jhazmat.2011.01.033

VALENÇA, R. M.; MACÊDO, W. V.; RODRIGUES, C. C.; NÓBREGA, S. W. Adsorção de fluoreto em solução aquosa e em água de abastecimento em carvão ativado à base de casca de castanha-do-Brasil. Engenharia Ambiental, Espírito Santo do Pinhal, v. 14, n. 2, p. 44-54, 2017.

WANG, J.; WANG, J.; WU, F.; QIU, N.; LIANG, Y.; FANG, S.; JIANG, X. Preparation of activated carbon from a renewable agricultural residue of pruning mulberry shoot, African. Journal of Biotechnology, Amsterdam, v. 9, n. 19, p. 2762-2767, 2010.

WAWRZKIEWICZ, M.; WISNIEWSKA, M.; GUN’KO, V. G.; ZARKO, V. I. Adsorptive removal of acid, reactive and direct dyes from aqueous solutions and wastewater using mixed silica–alumina oxide. Powder Technology, Lausanne, v. 278, n. 6, p. 306-315, 2015. DOI: 10.1016/j.powtec.2015.03.035

ZAREI, A.; BAZRAFSHAN, E.; FARIDI, H.; KHAKSEFIDI, R.; ALIZADEH, M. The evaluation of removal efficiency of phenol from aqueous solutions using Moringa peregrina tree shell ash. Iranian Journal of Health Sciences, Teerã, v. 1, n. 1, p. 65-74, 2013. DOI: 10.18869/acadpub.jhs.1.1.65

ZDRAVKOV, B. D.; CERMÁK, J. J.; SEFARA, M.; JANKU, J. Pore classification in the characterization of porous materials: a perspective. Central European Journal of Chemistry, Warsaw, v. 5, n. 2, p. 385-395, 2007. DOI: 10.2478/s11532-007-0017-9

Downloads

Published

2021-06-06 — Updated on 2023-10-02

Versions

How to Cite

Ferreira, L. M., & Melo, R. R. de . (2023). Using activated carbon as bioadsorvent for the residual waters treatment: a review. Nativa, 9(2), 215–221. https://doi.org/10.31413/nativa.v9i2.11387 (Original work published June 6, 2021)

Issue

Section

Engenharia Florestal / Forest Engineering

Most read articles by the same author(s)

<< < 1 2