VARIATION OF THE ANATOMIC CHARACTERISTICS OF Anthocleista grandiflora WOOD AS A FUNCTION OF TREE AGE AND TRUNK POSITION
DOI:
10.31413/nat.v12i2.16900Palavras-chave:
Qualidade da madeira, Vasos, Fibras, IdenntificaçãoResumo
ABSTRACT: This paper presents significant findings on the variation in the anatomical properties of Anthocleista grandiflora wood, which could greatly influence its utilization in various products. Cubic-shaped heartwood and sapwood specimens were extracted at the base, middle, and top of boles from 38-, 43-, and 47-year-old trees. The variations in cell morphology and anatomical characteristics were meticulously assessed. The specimens were prepared into 3 mm x 10 mm fragments, macerated, and viewed under a microscope using Motic Image plus 2.0 ML software. The following parameters were determined: average values of fiber length, fiber diameter, lumen width, double fiber wall thickness, Runkel ratio, aspect ratio, coefficient of rigidity, and coefficient of flexibility of trees at the base, middle, and top. Notably, there were more vessels in sapwood than in heartwood, and the vessel areas increased with increasing vessel lengths. The results also revealed that in the heartwood region, the fraction of vessel lumen increases with tree age in the base, middle, and top sections. These findings are significant as they provide a comprehensive understanding of the anatomical properties of A. grandiflora wood, which is classified as wood from numerous vessels, a common characteristic of noble woods. The wood exhibited anatomical properties suitable for cellulose, paper, and fiber-based products, highlighting its potential in various industries.
Keywords: wood quality; fibers; morphological characterization; timber industry.
Variação das características anatômicas da madeira de Anthocleista grandiflora em função da idade e da posição no troco
RESUMO: Objetivou-se avaliar as propriedades anatômicas da madeira de Anthocleista grandiflora e as suas possíveis aplicações. Amostras do cerne e alburno foram extraídas na base, meio e topo de árvores com 38, 43 e 47 anos de idade. Em seguida, foram avaliadas variações na morfologia celular e nas características anatômicas, por meio de fragmentos de 3 mm x 10 mm, macerados e visualizados em microscópio utilizando o software Motic Image plus 2.0 ML. Foram avaliados: comprimento da fibra, diâmetro da fibra, largura do lúmen, espessura da parede dupla da fibra, razão de Runkel, razão de aspecto, coeficiente de rigidez e coeficiente de flexibilidade das árvores na base, meio e topo. Verificou-se mais vasos no alburno do que no cerne, e as áreas dos vasos aumentaram com o aumento de seu comprimento. Os resultados obtidos também indicaram que na região do cerne a fração do lúmen dos vasos aumenta com a idade árvores nas seções da base, intermediária e topo, sendo os valores de 14.76, 11.38 e 20.73 mm para 38 anos; 23.74, 22.13 e 23.09 mm para 43 anos; 28.62, 12.89 e 25.01 mm para 47 anos. A A. grandiflora foi classificada como madeira de numerosos vasos, característica comum para madeiras nobres. A madeira apresentou propriedades anatômicas adequadas para celulose, papel e produtos à base de fibras.
Palavras-chave: qualidade da madeira; fibras; caracterização morfológica; indústria madeireira.
Referências
ADAMOPOULOS, S.; CHAVENETIDOU, M.; PASSIALIS, C.; VOULGARIDIS, E. Effect of cambium age and ring width on density and fiber length of black locust and chestnut wood. Wood Research, v. 55, n. 3, p. 25-36, 2010.
AJUZIOGU, G. C.; NZEKWE, U.; CHUKWUMA, H. I. Assessment of suitability of fibres of four Nigerian fruit trees for paper–making. Bio-Research, v. 8, n. 2, p. 679-681, 2010.
AMORIM, E. P.; LONGUI, E. L.; FARIA, R. F. P.; FREITAS, M. L. M.; MORAES, M. A.; CAMBUIM, J.; GONÇALVES, P. S. Anatomical radial variation and density in wood of rubber tree [Hevea brasiliensis (Willd. ex A. Juss.) Muell. Arg.] clones. Revista do Instituto Florestal, v. 33, n. 1, p. 7-16, 2021. https://doi.org/10.24278/2178-5031.202133101
ANTWI-BOASIAKO, C.; ANTHONIO, F. A.; FRIMPONG-MENSAH, K. Mechanical properties of coppiced and non-coppiced Pterocarpus erinaceus boles and their industrial application. Journal of Forestry Research, v. 30, p. 1973-1980, 2019. https://doi.org/10.1007/s11676-018-0727-1
APPIAH, M.; BLAY, D.; DAMNYAG, L.; DWOMOH, F. K.; PAPPINEN, A.; LUUKKANEN, O. Dependence on forest resources and tropical deforestation in Ghana. Environment, Development and Sustainability, v. 11, p. 471-487, 2009. https://doi.org/10.1007/s10668-007-9125-0
ATAC, Y.; EROĞLU, H. The effects of heartwood and sapwood on kraft pulp properties of Pinus nigra JF Arnold and Abies bornmuelleriana Mattf. Turkish Journal of Agriculture and Forestry, v. 37, n. 2, p. 243-248, 2013. https://doi.org/10.3906/tar-1205-20
AWAKU, F. A. Anatomical properties of Afina [Strombosia glaucescens, var Lucida (J. Leonard)]. Ghana Journal of Forestry, v. 1, p. 30-33, 1994.
BAHMANI, M.; FATHI, L.; KOCH, G.; KOOL, F.; AGHAJANI, H.; HUMAR, M. Heartwood and sapwood features of Sorbus terminalis grown in Iranian forests. Wood Research, v. 65, n. 2, p. 195-204, 2020. https://doi.org/10.37763/wr.1336-4561/65.2.195204
BAX, B.; MUSSIG, J. Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Composite Science and Technology, v. 68, p. 1601-1607, 2008. https://doi.org/10.1016/j.compscitech.2008.01.004
BENSANDY, O. O.; AUGUSTINE, U. A.; COMFORT, M. C. Phytochemical screening of Anthocleista grandiflora Gilg. Stem Bark. Global Journal of Research on Medicinal Plants & Indigenous Medicine, v. 1, n. 4, p. 114-122, 2012.
BOUDA, M.; WINDT, C. W.; MCELRONE, A. J.; BRODERSEN, C. R. In vivo pressure gradient heterogeneity increases flow contribution of small diameter vessels in grapevine. Nature communications, v. 10, n. 1, e5645, 2019. https://doi.org/10.1038/s41467-019-13673-6
CHAVE, J.; COOMES, D.; JANSEN, S.; LEWIS, S. L.; SWENSON, N. G.; ZANNE, A. E. Towards a worldwide wood economics spectrum. Ecology letters, v. 12, n. 4, p. 351-366, 2009. https://doi.org/10.1111/j.1461-0248.2009.01285.x
DONALDSON, L. A. Wood cell wall ultrastructure the key to understanding wood properties and behaviour. IAWA Journal, v. 40, n. 4, p. 645-672, 2019. https://doi.org/10.1163/22941932-40190258.
DORWU, F. K.; MENSAH, P.; ANTWI, K.; MELO, R. R.; PIMENTA, PAULA, E. A. O.; RUSCH, F. Influence of age and trunk positions on physicomechanical properties of Anthocleista grandiflora Gilg wood. Revista Matéria, v. 29, n. 2, e20240037, 2024. https://doi.org/10.1590/1517-7076-RMAT-2024-0037
GANESH, N. B.; REKHA, B.; MOHANAVEL, V.; GANESHAN, P. Exploring the possibilities of producing pulp and paper from discarded lignocellulosic fibers. Journal of Natural Fibers, v. 20, n. 1, e2137618, 2023. https://doi.org/10.1080/15440478.2022.2137618
HEMMASI, A. H.; SAMARIHA, A.; TABEI, A.; NEMATI, M.; KHAKIFIROOZ, A. Study of morphological and chemical composition of fibers from Iranian sugarcane bagasse. American-Eurasian Journal Agricultural & Environmental Science, v. 11, n. 4, p. 478-481, 2011.
IDU, M.; IJEOMAH, J. U. Wood anatomy of some savannah Fabaceae species: dimensional variation in fibre and vessel element of Daniellia olivera (Rolfe) Hutch & Dalz. Indian Forester, v. 126, n. 2, p. 149-153, 2000.
ISHIGURI, F.; HIRAIWA, T.; IIZUKA, K.; YOKOTA, S.; PRIADI, D.; SUMIASRI, N.; YOSHIZAWA, N. Radial variation of anatomical characteristics in Paraserianthes falcataria planted in Indonesia. IAWA Journal, v. 30, n. 3, p. 343-352, 2009. http://dx.doi.org/10.1163/22941932-90000223
IAWA_International Association Of Wood Anatomists. List of microscopic features for hardwood identification. International Association of Wood Anatomist, v. 10, p. 219-232, 1989.
IZEKOR, D. N.; FUWAPE, J. A. Variation in the anatomical characteristics of plantain grown Tectona grandis wood in Edo State, Nigeria. Achieves of Applied Science Research, v. 3, n. 1, p. 83-90, 2011.
JACOBSEN, A. L.; PRATT, R. B.; TOBIN, M. F.; HACKE, U. G.; EWERS, F. W. A global analysis of xylem vessel length in woody plants. American journal of botany, v. 99, n. 10, p. 1583-1591, 2012. https://doi.org/10.3732/ajb.1200140
JOKANOVIĆ, D.; VILOTIĆ, D.; MITROVIĆ, S.; MILJKOVIĆ, D.; REBIĆ, M.; STANKOVIĆ, D.; NIKOLIĆ, V. Correlations between the anatomical traits of Gymnocladus canadensis Lam. in heartwood and sapwood of early-and latewood zones of growth rings. Archives of Biological Sciences, v. 67, n. 4, p. 1399-1404, 2015. https://doi.org/10.2298/ABS150424118J
JULIANA, A. H.; PARIDAH, M. T.; RAHIM, S.; NOR, A. I.; ANWAR, U. M. K. Effect of adhesion and properties of kenaf (Hibiscus cannabinus L.) stem in particleboard performance. Journal of Adhesion Science Technology, v. 28, p. 546-560, 2014. https://doi.org/10.1080/01694243.2013.848622
KEW SCIENCE. Plants of the World Online. Anthocleista grandiflora Gilg Plants of the World Online, 2021. Retrieved January 31, 2024, from http: //www.plantsoftheworldonline.org/taxon/urn:lsid:ipni.org:names:545611 –1.
KHAN, M. Z.; SRIVASTAVA, S. K.; GUPTA, M. K. A state-of-the-art review on particulate wood polymer composites: processing, properties, and applications. Polymer Testing, v; 89, e106721, 2020. https://doi.org/10.1016/j.polymertesting.2020.106721
KIAEI, M. Technological properties of Iranian cultivated paulownia wood (Paulownia fortunei). Cellulose Chemistry Technology, v. 47, p. 735-743, 2012.
LI, S.; WANG, J.; YIN, Y.; LI, X.; DENG, L.; JIANG, X.; LI, Y. Investigating effects of bordered pit membrane morphology and properties on plant xylem hydraulic functions – a case study from 3D reconstruction and microflow modeling of pit membranes in angiosperm xylem. Plants, v. 9, n. 2, e231, 2020. https://doi.org/10.3390/plants9020231
LIU, M.; PAN, R.; TYREE, M. T. Intra-specific relationship between vessel length and vessel diameter of four species with long-to-short species-average vessel lengths: further validation of the computation algorithm. Trees, v. 32, p. 51-60, 2018. https://doi.org/10.1007/s00468-017-1610-y
MA, R.; LIU, H.; FU, Y.; LI, Y.; WEI, P.; LIU, Z. Variation of chemical components in sapwood, transition zone, and heartwood of Dalbergia odorifera and its relationship with heartwood formation. Forests, v. 12, n. 5, e577, 2021. https://doi.org/10.3390/f12050577
MENSAH, P.; MELO, R. R.; MITCHUAL, S. J.; GOVINA, J.; SEIDU, H. Characterisation and utilisation of Theobroma cacao stem wood. Ghana Journal of Forestry, v. 37, p. 79-99, 2021.
MIGNEAULT, S.; KOUBAA, A.; ERCHIQUI, F.; CHAALA, A.; ENGLUND, K.; KRAUSE, C.; WOLCOTT, M. Effect of fiber length on processing and properties of extruded wood-fiber/HDPE composites. Journal of Applied Polymer Science, v. 110, p. 1085-1092, 2008. http://dx.doi.org/10.1002/app.28720
MITCHUAL, S. J.; MENSAH, P.; FRIMPONG-MENSAH, K.; APPIAH-KUBI, E. Characterization of particleboard produced from residues of plantain pseudostem, Cacao pod and stem and Ceiba. Materials Sciences and Applications, v. 11, p. 817-836, 2020. https://doi.org/10.4236/msa.2020.1112054
MOLINA, J. G. A.; HADAD, M. A.; DOMÍNGUEZ, D. P.; ROIG, F. A. Tree age and bark thickness as traits linked to frost ring probability on Araucaria araucana trees in Northern Patagonia. Dendrochronologia, v. 37, p. 116-125, 2016. https://doi.org/10.1016/j.dendro.2016.01.003
MONTEOLIVA, S.; SENISTERRA, G.; MARQUINA, J. L.; MARLATS, R. M.; CIOCCHINI, G. R. Clones de sauce, longitud de fibras en su madera. Revista de la Facultad de Ciencias Agrarias, v. 34, n. 2, p. 49-56, 2002.
MONTEOLIVA, S.; SENISTERRA, S.; MARLATS, R. Variation of wood density and fibre length in six willow clones (Salix species). IAWA Journal, v. 26, n. 2, p. 197-202, 2005. http://dx.doi.org/10.1163/22941932-90000111
MUDAU, T. E.; OLOWOYO, J. O.; AMOO, S. O. Ethnobotanical assessment of medicinal plants used traditionally for treating diabetes in Vhembe district, Limpopo Province, South Africa. South African Journal of Botany, v. 146, p. 304-324, 2022. https://doi.org/10.1016/j.sajb.2021.10.016
NOTTEN, A. Anthocleista grandiflora | Plant Z Africa, 2014. Retrieved January 31, 2024, from http://pza.sanbi.org/anthocleista-grandiflora
ROQUE, R. M.; TOMAZELO FILHO, M.; AMADOR, E. C. Fiber morphology in fast growth Gmelina arborea plantations. Madera y bosques, v. 13, n. 2, p. 3-13, 2007. https://doi.org/10.21829/myb.2007.1321225
ROTICH, W. Botanical aspects, chemical overview, and pharmacological activities of 14 plants used to formulate a Kenyan Multi-Herbal Composition (CareVid TM). Scientific African, v. 17, p. e01287, 2022. Doi: https://doi.org/10.1016/j.sciaf.2022.e01287
OGASA, M.; MIKI, N.; YOSHIKAWA, K. Changes of hydraulic conductivity during dehydration and rehydration in Quercus serrata Thunb. and Betula platyphylla var. japonica Hara: the effect of xylem structures. Tree Physiology, v. 30, n. 5, p. 608-617, 2010. https://doi.org/10.1093/treephys/tpq011
OHEMENG, E.; MENSAH, P.; MELO, R. R.; EBANYENLE, E.; OWUSU, F. W.; SEIDU, H.; MITCHUAL, S. J. Technological properties of Memecylon lateriflorum wood: a timber species from Ghana. Nativa, v. 11, n. 3, p. 256-267, 2023. http://dx.doi.org/10.31413/nat.v11i3.15885
OLAOYE, K. O.; OLUWADARE, A. O. Comparative assessment of acoustic properties of talking drums made from hourglass shell from different geometric shapes of Gmelina arborea (Roxb.) wood. International Wood Products Journal, v. 11, n. 1, p. 20-26, 2020. https://doi.org/10.1080/20426445.2019.1706881
OLSON, M. E.; ANFODILLO, T.; ROSELL, J. A.; PETIT, G.; CRIVELLARO, A.; ISNARD, S.; CASTORENA, M. Universal hydraulics of the flowering plants: vessel diameter scales with stem length across angiosperm lineages, habits and climates. Ecology Letters, v. 17, n. 8, p. 988-997, 2014. https://doi.org/10.1111/ele.12302
OLUWADARE, A. O.; ASHIMIYU, O. S. The Relationship between fibre characteristics and pulp-sheet properties of Leucaena leucocephala (Lam.) De Wit. Middle-East Journal of Scientific Research, v. 2, n. 2, p. 63-68, 2007.
PINTO, I.; PEREIRA, H.; USENIUS, A. Heartwood and sapwood development within maritime pine (Pinus pinaster Ait.) stems. Trees, v. 18, p. 284-294, 2024. https://doi.org/10.1007/s00468-003-0305-8
PLOMION, C.; LEPROVOST, G.; STOKES, A. Wood formation in trees. Plant Physiology, v. 127, p. 1513-1523, 2001. https://doi.org/10.1016/j.crvi.2010.01.010
POORTER, L.; WRIGHT, S. J.; PAZ, H.; ACKERLY, D. D.; CONDIT, R.; IBARRA-MANRÍQUEZ, G.; WRIGHT, I. J. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology, v. 89, n. 7, p. 1908-1920, 2008. https://doi.org/10.1890/07-0207.1
POUZOULET, J.; PIVOVAROFF, A. L.; SANTIAGO, L. S.; ROLSHAUSEN, P. E. Can vessel dimension explain tolerance toward fungal vascular wilt diseases in woody plants? Lessons from Dutch elm disease and esca disease in grapevine. Frontiers in plant science, v. 5, e253, 2014. https://doi.org/10.3389/fpls.2014.00253
RAJPUT, N.; SEKAR, I.; DIVYA, M.; BALASUBRAMANIAN, A.; RAMAH, K.; PACKIALAKSHMI, M.; RAMESH, K. Anatomical properties of Pterygota alata: an alternate tree species for sustainable production of wood. Applied Ecology & Environmental Research, v. 21, n. 3, p. 2011-2029, 2023. http://dx.doi.org/10.15666/aeer/2103_20112029
REN, S.; WANG, Z.; YAN, L.; FENG, Q.; CHEN, Z.; ZHAO, R. Comparison of anatomical characteristics and chemical compositions between sapwood and heartwood of Michelia macclurei. Industrial Crops and Products, v. 193, e116190, 2023. https://doi.org/10.1016/j.indcrop.2022.116190
RIKI, J. T. B.; SOTANNDE, O. A.; OLUWADARE, A. O. Anatomical and chemical properties of wood and their practical implications in pulp and paper production: a review. Journal of Research in Forestry, Wildlife and Environment, v. 11, n. 3, p. 358-368, 2019.
RODRIGUEZ‐ZACCARO, F. D.; VALDOVINOS‐AYALA, J.; PERCOLLA, M. I.; VENTURAS, M. D.; PRATT, R. B.; JACOBSEN, A. L. Wood structure and function change with maturity: age of the vascular cambium is associated with xylem changes in current‐year growth. Plant, Cell & Environment, v. 42, n. 6, p. 1816-1831, 2019. https://doi.org/10.1111/pce.13528
ROQUE, R. M.; FO, M. T. Wood density and fibre dimensions of Gmelina arborea in fast growth trees in Costa Rica: relation to the growth rate. Forest Systems, v. 16, n. 3, p. 267-276, 2007. https://doi.org/10.5424/srf/2007163-01015
SALLEH, K. M.; HASHIM, R.; SULAIMAN, O.; HIZIROGLU, S.; NADHARI, W. N. A. W.; KARIM, N. A.; JUMHURI, N.; ANG, L. Z. P. Evaluation of properties of starch-based adhesives and particleboard manufactured from them. Journal of Adhesion Science and Technology, v. 29, n. 4, p. 319-336, 2015. https://doi.org/10.1080/01694243.2014.987362
SAN, P. H.; LONG, K. L.; ZHANG, Z. C.; HUI, C. T.; SENG, Y. W.; LIN, S. F.; HUN, T. A.; FONG, K. W. Anatomical features, fiber morphological, physical and mechanical properties of three years old new hybrid Paulownia: Green Paulownia. Research Journal of Forestry, v. 10, p. 30-35, 2016.
SAMARIHA, A.; KIAEI, M.; TALAEIPOUR, M.; NEMATI, M. Anatomical structural differences between branch and trunk in Ailanthus altissima wood. Indian Journal of Science and Technology, v. 4, p. 1676-1678, 2011. https://doi.org/10.17485/ijst/2011/v4i12/30306
SARAVANAN, V.; PARTHIBAN, K. T.; KUMAR, P.; ANBU, P. V.; GANESH, P. P. Evaluation of fuel wood properties of Melia dubia at different age gradation. Research Journal of Agriculture and Forestry Sciences, v. 1, p. 8-11, 2013.
TAYLOR, A. M.; GARTNER, B. L.; MORRELL, J. J. Heartwood formation and natural durability-a review. Wood and Fiber Science, v. 34, n. 4, p. 587-611, 2002.
WAN-MOHD-NAZRI, W. A. R.; JAMALUDIN, K.; RUDAINI, M. N.; HAZANDY, A. H.; RAHIM, S.; NOR, Y. Anatomical properties of Leucaena leucocephala wood: effects on oriented strand board. Research Journal of Forestry, v. 6, n. 3, p. 55-65, 2012.
XIE, J.; QI, J.; HU, T.; CORNELIS, F.; HSE, C. Y.; SHUPE, T. F. Effect of fabricated density and bamboo species on physical–mechanical properties of bamboo fiber bundle reinforced composites. Journal of Materials Science, v. 51, n. 16, p. 7480-7490, 2016. https://doi.org/10.1007/s10853-016-0024-3
ZANNE, A. E.; FALSTER, D. S. Plant functional traits -linkages among stem anatomy, plant performance and life history. New Phytologist, v. 185, 348-351, 2010. https://doi.org/10.1111/j.1469-8137.2009.03135.x
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Nativa
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Direitos Autorais para artigos publicados nesta revista são do autor, com direitos de primeira publicação para a revista. Em virtude de a aparecerem nesta revista de acesso público, os artigos são de uso gratuito, com atribuições próprias, em aplicações educacionais e não-comerciais.
A artigos publicados nessa revista, podem ser reproduzidos parcialmente ou utilizados como referência por outros autores, desde que seja cita a fonte, ou seja, a Revista Nativa.
Copyright for articles published in this journal are the authors, with first publication rights granted to the journal. The journal shows open access, and articles are free to use, with proper attribution, in educational and non-commercial.
The articles published in this journal may be reproduced in part or used as a reference by other authors, provided that the source is quoted.