This is an outdated version published on 2022-06-03. Read the most recent version.

Drought as a stressor and its effects on carbon allocation

Authors

DOI:

10.31413/nativa.v10i2.13078

Keywords:

carbon balance, water deficit, photoassimilates, carbohydrates.

Abstract

The objective of this review is to raise information on the effects of "drought" on the carbon allocation pattern on vegetables. Because they are sessile organisms, environmental changes are continuously exposed, especially in terms of climate. Among the climatic factors, water is the most important, rainfall variations and poor distribution can cause drought conditions, negatively affecting essential processes such as photosynthesis. With reduced photosynthetic activity, there is also a reduction in CO2 fixation and consequent production of carbohydrates, reflecting lower amounts of C allocated in source tissues for storage, for transport in the form of sugars, for metabolic use, for growth respiration, for defense compounds and exudates. The study of species and the understanding of the effects of drought on the C balance of the plant allows us to predict the responses of the same and the consequences for the functioning of the entire ecosystem, so that it is possible, through technologies, the development of materials tolerant to water deficit, seeking to mitigate the damage caused by water scarcity, aiming to guarantee the productive potential of crops.

References

ALBUQUERQUE, M. P. F.; MORAES, F. K. C.; SANTOS, R. I. N.; CASTRO, G. L. S.; RAMOS, E. M. L. S.; PINHEIRO, H. A. Ecofisiologia de plantas jovens de mogno-africano submetidas a déficit hídrico e reidratação. Pesquisa Agropecuária Brasileira, v. 48, n. 1, p. 9-16, 2013. DOI: http://dx.doi.org/10.1590/S0100-204X2013000100002

ALVARENGA, I. C. A.; QUEIROZ, G. A.; HONÓRIO, I. C. G.; VALADARES, R. V.; MARTINS, E. R. Prolina livre em alecrim-pimenta sob estresse hídrico antes da colheita. Revista Brasileira de Plantas Medicinais, v. 13, n. especial, p. 539-541, 2011. DOI: https://doi.org/10.1590/S1516-05722011000500006

ANDEREGG, R. L. Complex aspen forest carbon and root dynamics. Climatic Change, v. 111, n. 3, p. 983-991, 2012. DOI: https://doi.org/10.1007/s10584-012-0421-9

ANJUM, A. A.; TANVEER, M.; ASHRAF, U.; HUSSAIN, S.; SHAHZAD, B.; KHAN, I.; WANG, L. Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars. Environmental Science and Pollution Research, v. 23, p. 17132–17141, 2016. DOI: https://doi.org/10.1007/s11356-016-6894-8

ARRUDA, I. M.; MODA-CIRINO, V.; BURATTO, J. S.; FERREIRA, J. M. Crescimento e produtividade de cultivares e linhagens de amendoim submetidas a déficit hídrico. Pesquisa Agropecuária Tropical, v. 45, n. 2, p. 146-154, 2015. DOI: https://doi.org/10.1590/1983-40632015v4529652

BERTOLLI, S. C.; SOUZA, J.; SOUZA, G. M. Caracterização fotossintética da espécie isohídrica pata-de-elefante em condições de deficiência hídrica. Revista Caatinga, v. 28, n. 3, 2015. DOI: https://doi.org/10.1590/1983-21252015v28n322rc

BEWLEY, J. D. Physiological aspects of desiccation tolerance. Annual Reviews Plant Physiology, v. 30, p. 195-238, 1979. DOI: https://doi.org/10.1146/annurev.pp.30.060179.001211

BITTENCOURT, P. P.; SILVA, L. N. N., S. Estresse hídrico em plantas: aspectos morfofisiológicos, adaptações e mecanismos de resposta. In: DELLA, A. P. (Ed). VII Botânica no Inverno. São Paulo: Instituto de Biociências da Universidade de São Paulo, Departamento de Botânica, 2018. p. 235-244.

BÜNDIG, C.; VU, T. H.; MEISE, P.; SEDDIG, S.; SCHUM, A.; WINLELMANN, T. Variability in osmotic stress tolerance of starch potato genotypes (Solanum tuberosum L.) as revealed by an in vitro screening: role of proline, osmotic adjustment and drought response in pot trials. Journal of Agronomy and Crop Science, v. 203, n. 2, p. 206-218, 2016. DOI: https://doi.org/10.1111/jac.12186

CARVALHO, V.; CARVALHO NETO, A. A. Espécies reativas de oxigênio em plantas. In: PEÑA, M. H. (Ed). VI Botânica no Inverno. São Paulo: Instituto de Biociências da Universidade de São Paulo, p. 161-168, 2016.

CHAKRABORTY, U.; PRADHAN, B. Oxidative stress in five wheat varieties (Triticum aestivum L.) exposed to water stress and study of their antioxidant enzyme defense system, water stress responsive metabolites and H2O2 accumulation. Brazilian Journal of Plant Physiology, v. 24, n. 2, p. 117-130, 2012. DOI: https://doi.org/10.1590/S1677-04202012000200005

CHITARRA, W.; PAGLIARANI, C.; MASERTI, B.; LUMINI, E.; SICILIANO, I.; CASCONE, P.; SCHUBERT, A.; GAMBINO, G.; BALESTRINI, R.; GUERRIERI, E. Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiology, v. 171, n. 2, p. 1009-1023, 2016. DOI: https://doi.org/10.1104/pp.16.00307

DANNOURA, M.; EPRON, D.; DESALME, D.; MASSONNET, C.; TSUJI, S.; PLAIN, C.; PRIAULT, P.; GÉRANT, D. The impacts of prolonged drought on phloem anatomy and phloem transport ins young beech trees. Tree Physiology, v. 39, n. 2, p. 201-210, 2019. DOI: h https://doi.org/10.1093/treephys/tpy070

DURAND, M.; PORCHERON. B.; HENNION, N.; MAUROUSSET, L.; LEMOINE, R.; POURTAU, N. Water deficit enhances c export to the roots in Arabidopsis thaliana plants with contribution of sucrose transporters in both shoot and roots. Plant Physiology, v. 170, n. 3, p. 1460-1479, 2016. https://doi.org/10.1104/pp.15.01926

FELLBAUM, C. R.; GACHOMO, E. W.; BEESETTY, Y.; CHOUDHARI, S.; STRAHAN, G. D.; PFEFFER, P. E.; KIERS, E. T.; BÜCKING, H. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences, v. 109, n. 7, p. 266-6-2671, 2012. DOI: https://doi.org/10.1073/pnas.1118650109

FAO_Food and Agriculture Organization of the United Nations. Drought impact mitigation and prevention in the Limpopo River Basin. Roma: FAO, 2004. Disponível em: http://www.fao.org/3/y5744e/y5744e00.htm#Contents Acesso em: 15 abr. 2021.

FUCHSLUEGER, L.; BAHN, M.; FRITZ, K.; HASIBEDER, R.; RICHTER, A. Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow. New Phytologist, v. 201, n. 3, p 916-927, 2014. DOI: https://doi.org/10.1111/nph.12569

FUMIS, T. F.; PEDRAS, J. F. Variação nos níveis de prolina, diamina e poliaminas em cultivares de trigo submetidas a déficits hídricos. Pesquisa Agropecuária Brasileira, v. 37, n. 4, p. 449-453, 2002. DOI: https://doi.org/10.1590/S0100-204X2002000400004

GALVEZ, D. A.; LANDHÄUSSER, S. M.; TYREE, M. T. Root carbon reserve dynamics in aspen seedlings: does simulated drought induce reserve limitation?. Tree Physiology, v. 31, n. 3, p. 250-257, 2011. DOI: https://doi.org/10.1093/treephys/tpr012

GARGALLO-GARRIGA, A.; PREECE, C.; SARDANS, J.; ORAVEC, M.; URBAN, O.; PEÑUELAS, J. Root exudate metabolomes change under drought and show limited capacity for recovery. Scientific Reports, v. 8, n. 12696, p. 1-15, 2018. DOI: https://doi.org/10.1038/s41598-018-30150-0

GEIGER, D. R.; SERVAITES, J. C. Diurnal regulation of photosynthetic carbon metabolism C3 plants. Annual Review of Plant Physioly and Plant Molecular Biology, v. 45, p. 235-56, 1994. DOI: https://doi.org/10.1146/annurev.pp.45.060194.001315

GONÇALVES, E. R. G.; FERREIRA, V. M., SILVA, J. V.; ENDRES, L.; BARBOSA, T. P.; DUARTE, W. G. Trocas gasosas e fluorescência da clorofila a em variedades de cana-de-açúcar submetidas à deficiência hídrica. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 14, n. 4, p. 378-386, 2010. DOI: https://doi.org/10.1590/S1415-43662010000400006

HASIBEDER, R.; FUCHSLUEGER, L.; RICHTER, A.; BAHAN, M. Summer drought alters carbon allocation to roots and root respiration in mountain grassland. New Phytologist, v. 205, n. 3, p. 1117-1127, 2015. DOI: https://doi.org/10.1111/nph.13146

HOCH, G. Carbon Reserves as indicators for Carbon. In: LÜTTGE, U.; BEYSCHLAG, W. (Ed.). Progress is Botany, v. 76, p. 321-346, 2015. DOI: https://doi.org/10.1007/978-3-319-08807-513

KANEGAE, M. F.; BRAZ, V. S.; FRANCO, A. C. Efeitos da seca sazonal e disponibilidade de luz na sobrevivência e crescimento de Bowdichia virgilioides em duas fitofisionomias típicas dos cerrados do Brasil Central. Brazilian Journal of Botany, v. 23, n. 4, p .459-458, 2000. DOI: https://doi.org/10.1590/S0100-84042000000400012

KOOYERS, N. J. The evolution of drought escape and avoidance in natural herbaceous populations. Plant Science, v. 234, p. 155-162, 2015. DOI: https://doi.org/10.1016/j.plantsci.2015.02.012

KRASENSKY, J.; JONAK, C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, v. 63, n. 4, p. 1593-1608, 2012. DOI: https://doi.org/10.1093/jxb/err460

LAVIOLA, B. G.; MARTINEZ, H. E. P.; SALOMÃO, L. C. C.; CRUZ, C. D.; MENDONÇA, S. M.; PAULA NETO, A. Alocação de fotoassimilados em folhas e frutos de cafeeiro cultivado em duas altitudes. Pesquisa Agropecuária Brasileira, v. 42, n. 11, p. 1521-1530, 2007. DOI: https://doi.org/10.1590/S0100-204X2007001100002

LU, T.; KE, M.; LAVOIE, M.; JIN, Y.; FAN, X.; ZHANG, Z.; FU, Z.; SUN, L.; GILLINGS, M.; PEÑUELAS, J.; QIAN, H.; ZHU, Y. G. Rhizosphere microosganisms can influence the timing of plant flowering. Microbiome, v. 6, n. 231, p. 1-12, 2018. DOI: https://doi.org/10.1186/s40168-018-0615-0

NASCIMENTO, N. F.; NASCIMENTO, L. B. B.; GONÇALVES, J. F. C. Respostas funcionais foliares de plantas jovens de Hevea brasiliensis submetidas à deficiência hídrica e à reidratação. Ciência Florestal, v. 29, n. 3, p. 1019-1032, 2019. DOI: https://doi.org/10.5902/1980509832658

MAGALHÃES, P. C.; LAVINSKY, A. O., SOUZA, T. C.; LINO, L. O. Respostas anatômicas, fisiológicas e enzimáticas em linhagens de sorgo contrastantes a seca sob estresse hídrico. Embrapa Milho e Sorgo, 2016. Disponível em: <https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1056838/1/bol135.pdf>. Acesso em: 18 mar. 2021.

MARENCO, R. A.; ANTEZANA-VERA, S. A.; GOUVÊA, R. S.; CAMARGO, M. A. B.; OLIVEIRA, M. F.; SANTOS, J. K. S. Fisiologia de espécies florestais da Amazônia: fotossíntese, respiração e relações hídricas. Revista Ceres, v. 61, p. 786-799, 2014. DOI: http://dx.doi.org/10.1590/0034-737X201461000004

MCKEE, T. B.; DOESKEN, N. J.; KLEIST, J. The relationship of drought frequency and duration to time sacales. In: Eighth Conference on Applied Climatology. p. 1-6, jan. 1993. Disponível em: <https://www.droughtmanagement.info/literature/AMS_Relationship_Drought_Frequency_Duration_Time_Scales_1993.pdf>. Acesso em: 02 abr. 2021.

MEDEIROS, D. B.; SILVA, E. C.; NOGUEIRA, R. J. M. C.; TEIXEIRA, M. M.; BUCKERIDGE, M. S. Physiological limitations in two sugarcane varieties under water suppression and after recovering. Theoretical and Experimental Plant Physiology, v. 26, n. 3, p. 213-222, 2013.

MONTEIRO, J. G.; CRUZ, F. J. R.; NARDIN, M. B.; SANTOS, D. M. M. Crescimento e conteúdo de prolina em plântulas de guandu submetidas a estresse osmótico e à putrescina exógena. Pesquisa Agropecuária Brasileira, v. 49, n. 1, p. 18-25, 2014. DOI: http://dx.doi.org/10.1590/S0100-204X2014000100003

OLIVEIRA, M. M.; GALVÃO, E. K. S.; SOUZA, C. L. M.; BOAVENTURA, V. J.; OLIVEIRA, L. M.; CASTRO NETO, M. T.; PELACANI, C. R. Crescimento e partição de massa seca em plantas jovens de amburana (Amburana cearenses (Fr. All.) AC Smith) e de umbuzeiro (Spondias tuberosa Arr. Cam.). Ciência Florestal, v. 29, n. 3, p. 1142-1153, 2019. https://doi.org/10.5902/1980509827189

PACHECO, A. C.; CAMARGO, P. R.; SOUZA, C. Deficiência hídrica e aplicação de ABA nas trocas gasosas e no acúmulo de flavonoides em calêndula (Calendula officinalis L.). Acta Scientiarum, v. 22, n. 2, 2011. DOI: https://doi.org/10.4025/actasciagron.v33i2.6390

PEREIRA, J. W. L.; MELO FILHO, P. A.; ALBUQUERQUE, M. B.; NOGUEIRA, R. J. M. C.; SANTOS, R. C. Mudanças bioquímica em genótipos de amendoim submetidos a déficit hídrico moderado. Revista Ciência Agronômica, v. 43, n. 43, p. 766-773, 2012. DOI: http://dx.doi.org/10.1590/S1806-66902012000400019

PIPER, F. Drought induces opposite changes in the concentration of non-structural carbohydrates of two evergreen Nothofagus species of differential drought resistance. Annals of Forest Science, v. 68, n. 2, p. 415-424, 2011. https://doi.org/ 10.1007/s13595-011-0030-1

REIGER, N.; STREB, S.; COCOZZA, C.; SCHAUB, M.; CHERUBINI, P.; ZEEMAN, S. C.; FREY, B. Drought tolerance of two black poplar (Populus nigra L.) clones: contribution of carbohydrates and oxidative stress defence. Plant, Cell & Environment, v. 32, n. 12, p. 1724-1736, 2009. DOI: https://doi.org/10.1111/j.1365-3040.2009.02030.x

RUEHR, N. K.; OFFERMANN, C. A.; GESSLER, A.; A.; WINKLER, J. B.; FERRIO, J. P.; BUCHMANN, N.; BARNARD, R. L. Drought effects on allocation of recent carbon: from beech leaves to soil CO2 efflux. New Phytologist, v. 184, n. 4, p. 950-961, 2009. DOI: https://doi.org/10.1111/j.1469-8137.2009.03044.x

SALMON, Y.; DIETRICH, L.; SEVANTO, S.; HÖLTTÄ, T.; DANNOURA, M.; EPRON, D. Drought impacts on tree phloem: from cell-level responses to ecological significance. Tree Physiology, v. 39, n. 2, p. 173-191, 2019. DOI: https://doi.org/10.1093/treephys/tpy153

SANTOS, D.; GUIMARÃES, V. F.; KLEIN, J., FIOREZE, S. L.; MACEDO JÚNIOR, E. K. Cultivares de trigo submetidas a déficit hídrico no início do florescimento, em casa de vegetação. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 16, n. 8, 2012. DOI: https://doi.org/10.1590/S1415-43662012000800004

SCALON, S. P. Q.; MUSSURY, R. M.; EUZÉBIO, V. L. M.; KODAMA, F. M.; KISSMANN, C. Estresse hídrico no metabolismo e crescimento inicial de mudas de mutambo (Guazuma ulmifolia Lam.). Ciência Florestal, v. 21, n. 4, p. 655-662, 2011. https://doi.org/10.5902/198050984510

SILVA, R. T. L.; OLIVEIRA NETO, C. F.; BARBOSA, R. R. N.; COSTA, R. C. L.; CONCEIÇÃO, H. E. O. Resposta fisiológica de plantas de mamoeiro submetidas ao déficit hídrico. Nucleus, v. 9, n. 2, p. 113-120, 2012. DOI: https://doi.org/10.3738/1982.2278.779

SILVA, V. A.; ANTUNES, W. C.; GUIMARÂES, B. L. S.; PAIVA, R. M. C.; SILVA, V. F.; FERRÃO, M. A. G.; DAMATTA, F. M.; LOUREIRO, M. E. Resposta fisiológica de clone de café Conilon sensível à deficiência hídrica enxertado em porta-enxerto tolerante. Pesquisa Agropecuária Brasileira, v. 45, n. 5, p. 457-464, 2010. http://dx.doi.org/10.1590/S0100-204X2010000500004

SILVENTE, S.; SOBOLEV, A. P.; LARA, M. Metabolite adjustments in drought tolerant and sensitive soybean genotypes in response to water stress. Plos One, v. 7, n. 6, p. 1-11, 2012. DOI: https://doi.org/10.1371/journal.pone.0038554

SOUZA, P. J. O. P.; FERREIRA, D. P.; SOUSA, D. P.; NUNES, H. G. G. C.; BARBOSA, A. V. C. Trocas gasosas do feijão-caupi cultivado no Nordeste Paraense em resposta à deficiência hídrica forçada durante a fase reprodutiva. Revista Brasileira de Meteorologia, v. 35, n.1, p. 12-22, 2020. DOI: https://doi.org/10.1590/0102-7786351029

SOUZA, G. M.; LÜTTGE, U. Stability as a phenomenon emergent from plasticity-complexity-diversity in eco-physiology. Progress in Botany, v. 76, p. 28, 2015. DOI: https://doi.org/0.10007/978-3-319-08807-5_9

STIRBET, A., LAZÁR, D.; GUO, Y.; GOVINDJEE, G. Photosynthesys: basics, history and modelling. Annals of Botany, v. 126, p. 511-537, 2020.

TAIZ, L.; ZEIGER, E.; MØLLER, I. M.; MURPHY, A. Fisiologia e desenvolvimento vegetal. São Paulo: Artmed, 2017. 858p.

TARDIEU, F.; SIMONNEAU, T.; MULLHER, B. The physiological basis of drought tolerance in crop plantas: a scenario-dependent problabilistic approach. Annual Review of Plant Biology, v. 69, p. 733-59, 2018. DOI: https://doi.org/10.1146/annurev-arplant-042817-040218

UNITED NATIONS CONVENTION TO COMBAT DESERTIFICATION. Drought: reducing impacts and building resilience. Germany: UNCCD, 2016. Disponível em: <https://knowledge.unccd.int/topics/drought-reducing-impacts-and-building-resilience>. Acesso em: 15 abr. 2021.

VALLADARES, F.; LAANISTO, L.; NIINEMETS, Ü.; ZAVALA, M. A. Shedding light on shade: ecological perspectives of understorey plant life. Plant Ecology & Diversity, v. 9, n. 3, p. 237-251, 2016. DOI: https://doi.org/10.1080/17550874.2016.1210262

WOOD, A. J. Eco-physiological adaptations to limited water environments. In: JENKS, M. A.; HASEGAWA, P. M. (Ed). Plant Abiotic Stress. Indiana: Blackwell Publishing, 2005. p. 14-37.

WOODRUFF, D. R.; MEINZER, F. C. Water stress, shoot growth and storage of non‐structural carbohydrates along a tree height gradient in a tall conifer. Plant, Cell & Environment, v. 34, n. 11, p. 1920-1930, 2011. DOI: https://doi.org/10.1111/j.1365-3040.2011.02388.x

YANG, P. M.; HUANG, Q. C.; QIN, G. Y.; ZHAO, S. P., ZHOU, J. G. Different drought-stress responses in photosynthesis and reactive oxygen metabolism between autotetraploid and diploid rice. Photosynthetica, v. 52, n. 2, p. 193-202, 2014. DOI: https://doi.org/10.1007/s11099-014-0020-2

ZAHER-ARA, T.; BOROOMAND, N.; SADAT-HOSSEINI, M. Physiological and morphological response to drought stress in seedlings of de citrus. Trees, v. 30, p. 985-993, 2016. DOI: https://doi.org/10.1007/s00468-016-1372-y

Downloads

Published

2022-06-03

Versions

How to Cite

Alves Gomes, A., & Carvalho da Silva, A. (2022). Drought as a stressor and its effects on carbon allocation . Nativa, 10(2), 142–153. https://doi.org/10.31413/nativa.v10i2.13078

Issue

Section

Agronomia / Agronomy

Most read articles by the same author(s)