WOOD VINEGAR: CHEMICAL CHARACTERISTICS, PHYTOTOXIC EFFECTS, AND IMPACTS ON GREENHOUSE GAS EMISSIONS

Autores

DOI:

10.31413/nativa.v10i3.14123

Palavras-chave:

pyroligneous acid, biomass, pyrolysis, residues, cytotoxicity

Resumo

ABSTRACT: Wood vinegar has been used for over a century as a fertilizer and antimicrobial agent, but its impacts on ecosystems are poorly understood; further research is necessary to understand its chemical characteristics and avoid negative impacts. This study assessed the chemical characteristics, phytotoxicity, potential cytotoxicity, and greenhouse gas emissions of wood vinegar made from slow pyrolysis in a hot-tail kiln using cambara wood (Qualea sp.). Incubation experiments with varying concentrations of wood vinegar were established in samples of clayey, loamy, and sandy tropical soils, measuring CO2, N2O, and CH4 over a 120-day period. Toxic effects on the germination, root tips, and meristematic cells of Lactuca sativa were also assessed. The findings confirmed that wood vinegar can function as a chemical fertilizer  and pesticide, as well as a co-solvent for chemicals, particularly in agricultural and pharmaceutical applications, while the phytotoxicity indicated that this substance must be diluted for agricultural uses. Wood vinegar was seen to inhibit CO2 and N2O emissions from loamy and clayey soils, but this effect was not observed in sandy soil. Wood vinegar also blocked cell division in some dilutions, but at concentrations of less than 0.5% it did not present a potential risk to the environment or plants in general.

Keywords: pyroligneous acid; biomass; pyrolysis; residues; cytotoxicity.

 

Vinagre de madeira: características químicas, efeitos fitotóxicos e impactos nas emissões de gases

 

RESUMO: O vinagre de madeira é usado há mais de um século como fertilizante e agente antimicrobiano, mas seus impactos nos ecossistemas são pouco conhecidos; pesquisas são necessárias para entender suas características e evitar impactos negativos. Este estudo avaliou as características químicas, fitotoxicidade, potencial citotoxicidade e emissões de gases do vinagre de madeira obtido a partir de pirólise lenta em forno de cauda quente utilizando madeira de cambará (Qualea sp.). Experimentos de incubação com concentrações variadas do vinagre foram estabelecidos em amostras de solos tropicais argilosos, textura média e arenosos, medindo CO2, N2O e CH4 durante 120 dias. Efeitos tóxicos no modelo Lactuca sativa também foram avaliados. Os resultados confirmaram que o vinagre de madeira pode funcionar como fertilizante químico e pesticida, bem como um co-solvente para produtos químicos, principalmente em aplicações agrícolas e farmacêuticas, enquanto a fitotoxicidade indicou que essa substância deve ser diluída para uso agrícola. O vinagre de madeira parece inibir as emissões de CO2 e N2O de solos argilosos e argilosos, mas esse efeito não foi observado em solo arenoso. O vinagre de madeira também bloqueou a divisão celular em algumas diluições, mas em concentrações inferiores a 0,5% não apresentou risco potencial ao meio ambiente ou às plantas em geral.

Palavras-chave: ácido pirolenhoso; biomassa; pirólise; resíduos; citotoxicidade.

Referências

ABDULMALIK, O.; SAFO, M. K.; CHEN, Q.; YANG, J.; BRUGNARA, C.; OHENE-FREMPONG, K.; ABRAHAN, D. J.; ASAKURA, T. 5-hydroxymethyl-2-furfural modifies intracellular sickle hemoglobin and inhibits sickling of red blood cells. British Journal of Haematology, v. 128, n. 4, p. 552-561, 2005. DOI: 10.1111/j.1365-2141.2004.05332.x

ALEXANDER, A. Optimum Timing of Foliar Nutrient Sprays. In: ALEXANDER, A. (Ed.). Foliar Fertilization: International Symposium on Foliar Fertilization, I, Proceedings… Organized by Schering Agrochemical Division, Special Fertilizer Group, Berlin (FRG) March 14–16, 1985. Dordrecht: Springer Netherlands, 1986. p. 44-60.

BAILEY, D.; BILDERBACK, T. Alkalinity control for irrigation water used in nurseries and greenhouses. North Carolina: North Carolina State University, 1998. Available: < http://www.hort.vt.edu/ghvegetables/documents/Irrigation%20Fertility%20Media/NCSUAlkalinityContrl.pdf >.

BASAVAIAH, N.; MOHITE, R. D.; SINGARE, P. U.; REDDY, A. V. R.; SINGHAL, R. K.; BLAHA, U. Vertical distribution, composition profiles, sources and toxicity assessment of PAH residues in the reclaimed mudflat sediments from the adjacent Thane Creek of Mumbai. Marine Pollution Bulletin, v. 118, n. 1-2, p. 112-124, 2017. DOI: https://doi.org/10.1016/j.marpolbul.2017.02.049

BAUMARD, P.; BUDZINSKI, H.; GARRIGUES, P. Polycyclic aromatic hydrocarbons in recent sediments and mussels (Mytilus edulis) from the Western Baltic Sea: occurrence, bioavailability and seasonal variations. Marine Environmental Research, v. 47, n. 1, p. 17-47, 1999. DOI: https://doi.org/10.1002/etc.5620170501

BRASIL_Ministério da Agricultura, Pecuária e Abastecimento (MAPA). Instrução Normativa nº 46 de 22 de novembro de 2016. Brasília: Diário Oficial da União, n. 234, p. 4- 13, 07 dez. 2016. Available on: < http://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?data=07/12/2016&jornal=1&pagina=4&totalArquivos=148 >. Acesso em: 20 ago. 2018.

BRAZIL_ Ministério da Agricultura, Pecuária e Abastecimento (MAPA). Normative Instruction n. 28. Manual de Métodos Analíticos Oficiais para Fertilizantes Minerais, Orgânicos, Organominerais e Corretivos. Brasília: Diário Oficial da União, n. 28, p. 11, 31 jul. 2007. Available on: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/manual-de-metodos_2017_isbn-978-85-7991-109-5.pdf. Acesso em: 15 set. 2022.

CANADIAN_Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health: Polycyclic aromatic hydrocarbons. Yukon: Council of Ministers of the Environment, 2010. Available: < http://ceqg-rcqe.ccme.ca/download/en/320 >.

CHANGE., I.-I. P. O. C. Climate change 2007: fourth assessment report on climate change impacts, adaptation and vulnerability of the intergovernmental panel on climate change. Cambridge: Cambridge University, 2007. Available: < https://www.ipcc.ch/pdf/assessment-report/ar4/wg2/ar4_wg2_full_report.pdf >.

CHEMSPIDER. Phenylethyl alcohol. CHEMSPIDER 2017. Available on: http://www.chemspider.com/Chemical-Structure.553122.html

COOPER, R. A. Inhibition of biofilms by glucose oxidase, lactoperoxidase and guaiacol: the active antibacterial component in an enzyme alginogel. International Wound Journal, v. 10, n. 6, p. 630-637, 2013. DOI: https://doi.org:10.1111/iwj.12083

DILUSTRO, J. J.; COLLINS, B.; DUNCAN, L.; CRAWFORD, C. Moisture and soil texture effects on Soil CO2 efflux components in southeastern mixed pine forests. Forest Ecology and Management, v. 204, n. 1, p. 85-95, 2005. DOI: https://doi.org/10.1016/j.foreco.2004.09.001

EVANS, G. B.; FURNEAUX, R. H.; GRAVESTCK, M. B.; LYNCH, G. P.; SCOTT, G. K. The synthesis and antibacterial activity of totarol derivatives. Part 1: Modifications of ring-c and pro-drugs. Bioorganic & Medicinal Chemistry, v. 7, n. 9, p. 1953-1964, 1999. DOI: https://doi.org/10.1016/S0968-0896(99)00162-5

FAGERNAS, L.; KUOPPALA, E.; TIILIKKALA, K.; OASMAA, A. Chemical Composition of Birch Wood Slow Pyrolysis Products. Energy & Fuels, v. 26, n. 2, p. 1275-1283, 2012. https://doi.org/10.1021/ef2018836

FISHEL, F. M.; FERREL, J. A. Water pH and the effectiveness of pesticides. Gainesville. 2016

FOSSATI, A.; VIMERCATI, M. G.; BOZZI, M.; PASSAROTTI, C.; BANDI, G. L.; FORMENTI, A. Effects of metoxibutropate, ibuprofen and guaiacol on the gastrointestinal system. International Journal of Tissue Reactions-Experimental and Clinical Aspects, v. 13, n. 1, p. 45-50, 1991.

FORSTER, P.; RAMASWAMY, V.; ARTAXO, P.; BERNTSEN, T.; BETTS, R.; FAHEY, D.W.; HAYWOOD, J.; LEAN, J.; LOWE, D.C.; MYHRE, G.; NGANGA, J.; PRINN, R.; RAGA, G.; SCHULZ, M.; VAN DORLAND, R. Changes in Atmospheric Constituents and in Radiative Forcing (Chapter 2). In: SOLOMON, S.; QIN, D.; MANNING, M.; CHEN, Z.; MARQUIS, M.; AVERYT, K. B.; TIGNOR, M.; MILLER, H. L. (Eds.). Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; Cambridge (United Kingdom), 2007; p. 129-234; Available at http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf

GONET, S. S.; DEBSKA, B. Dissolved organic carbon and dissolved nitrogen in soil under different fertilization treatments. Plant Soil and Environment, v. 52, n. 2, p. 55-63, 2006. DOI: 10.17221/3346-PSE

GREENWOOD-VAN MEERVELD, B.; TYLER, KUGE, OGATA. Anti-diarrhoeal effects of seirogan in the rat small intestine and colon examined in vitro. Alimentary Pharmacology & Therapeutics, v. 13, n. 1, p. 97-102, 1999. DOI: https://doi.org/10.1046/j.1365-2036.1999.00443.x

HANGER, M. Potential of the slow pyrolysis products birch tar oil, wood vinegar and biochar in sustainable plant protection-pesticidal effects, soil improvement and environmental risks. 2013. 42 f. Dissertação (Mestrado em Environmental Ecology). Faculty of Biological and Environmental Science, University of Helsinki, Lahti.

ICIS. Acetic acid prices, markets & analysis. 2017. Available: < https://www.icis.com/chemicals/acetic-acid/?tab=tbc-tab2 >.

KIM, D. H.; SEO, H. E.; LEE, S. C.; LEE, K. Y. Effects of wood vinegar mixed with insecticides on the mortalities of Nilaparvata lugens and Laodelphax striatellus (Homoptera: Delphacidae). Animal Cells and Systems, v. 12, n. 1, p. 47-52, 2008. DOI: https://doi.org/10.1080/19768354.2008.9647153

KOSCHORRECK, M.; CONRAD, R. Oxidation of atmospheric methane in soil - measurements in the field, in soil cores and in soil samples. Global Biogeochemical Cycles, v. 7, n. 1, p. 109-121, 1993. DOI: 10.1029/92GB02814

KYUMA, K. Paddy Soil Science. Kyoto University Press, 2004. 280p. Available: < https://books.google.com.br/books?id=IvjZM7jX3hEC >.

LE BERRE, C.; SERP, P.; KALCK, P.; TORRENCE, G. P. Acetic acid. In: FRITZ, U. E. A. (Ed.). Ullmanns Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH, [Hoboken, N.J.], 2013. p.1-29.

LEME, D. M.; ANGELIS, D. D. F. D.; MARIN-MORALES, M. A. Action mechanisms of petroleum hydrocarbons present in waters impacted by an oil spill on the genetic material of Allium cepa root cells. Aquatic Toxicology, v. 88, n. 4, p. 214-219, 2008. DOI: http://dx.doi.org/10.1016/j.aquatox.2008.04.012

LENZI, E.; FAVERO, L. O. B. Introdução à química da atmosfera: ciência, vida e sobrevivência. Rio de Janeiro: LTC, 2009. 480p.

LI, Z.; WANG, Q.; RUAN, X.; PAN, C.; JIANG, D. Phenolics and Plant Allelopathy. Molecules, v. 15, n. 12, p. 8933-8952, 2010. DOI: https://doi.org/10.3390/molecules15128933>

LOO, A. Y.; JAIN, K.; DARAH, I. Antioxidant activity of compounds isolated from the pyroligneous acid, Rhizophora apiculata. Food Chemistry, v. 107, n. 3, p. 1151-1160, 2008. DOI: 10.1016/j.foodchem

LU, H. F.; LASHARIA, M. S.; LIU, X.; JI, H.; LI, L.; ZHENG, J.; KIBUE, G. W.; JOSEPH, S.; PAN, G. Changes in soil microbial community structure and enzyme activity with amendment of biochar-manure compost and pyroligneous solution in a saline soil from Central China. European Journal of Soil Biology, v. 70, p. 67-76, 2015. DOI: https://doi.org/10.1016/j.ejsobi.2015.07.005

LUCCHINI, J. J.; CORRE, J.; CREMIEUX, A. Antibacterial activity of phenolic-compounds and aromatic alcohols. Research in Microbiology, v. 141, n. 4, p. 499-510, 1990. DOI: 10.1016/0923-2508(90)90075-2

MA, X. H.; WEI, K.; ZHANG, S.; SHI, L.; ZHAO, Z. Isolation and bioactivities of organic acids and phenols from walnut shell pyroligneous acid. Journal of Analytical and Applied Pyrolysis, v. 91, n. 2, p. 338-343, 2011. https://doi.org/10.1016/j.jaap.2011.03.009

MAHMUD, K. N.; YAHAYU, M.; SARIP, S. H.; RIZAN, N. H.; MIN, C. B.; MUSTAFA, N. F.; UJANG, S. N. S.; ZAKARIA, Z. A. Evaluation on Efficiency of Pyroligneous Acid from Palm Kernel Shell as Antifungal and Solid Pineapple Biomass as Antibacterial and Plant Growth Promoter. Sains Malaysiana, v. 45, n. 10, p. 1423-1434, 2016.

MERCK. 2-Phenylethanol for synthesis. 2017a. Available: <https://www.merckmillipore.com/INTERSHOP/web/WFS/Merck-BR-Site/pt_BR/-/BRL/ViewProductDocument-ReachUsesForSUBID?SUBID=100000033867 >.

MERCK. 5-Methylfurfural for synthesis. 2017b. Available: <http://www.merckmillipore.com/INTERSHOP/web/WFS/Merck-BR-Site/pt_BR/-/BRL/ViewProductDocument-ReachUsesForSUBID

MOHAMAD, M. H.; AWANG, R.; YUNUS, W. M. Z. W. A review of acetol: Application and production. American Journal of Applied Sciences, v. 8, n. 11, p. 1135-1139, 2011. DOI: https://doi.org/10.3844/ajassp.2011.1135.1139.

MONTAZERI, N.; OLIVEIRA, A. C. M.; HIMELBLOOM, B. H.; LEIGH, M. B.; CRAPO, C. A. Chemical characterization of commercial liquid smoke products. Food Science & Nutrition, v. 1, n. 1, p. 102-115, 2012. DOI: https://doi.org/10.1002/fsn3.9.

MU, J.; UEHARA, T.; FURUNO, T. Effect of bamboo vinegar on regulation of germination and radicle growth of seed plants II: Composition of moso bamboo vinegar at different collection temperature and its effects. Journal of Wood Science, v. 50, n. 5, p. 470-476, 2004. DOI: DOI:10.1007/s10086-002-0472-z

MUKHTAR, H.; LINK, C. M.; CHERNIAK, E.; KUSHNER, D. M.; BICKERS, D. R. Effect of topical application of defined constituents of coal-tar on skin and liver aryl-hydrocarbon hydroxylase and 7-ethoxycoumarin deethylase activities. Toxicology and Applied Pharmacology, v. 64, n. 3, p. 541-549, 1982. DOI: https://doi.org/10.1016/0041-008X(82)90251-4

MUNGKUNKAMCHAO, T.; KESMALA T.; PIMRATCH S.; TOONSAN, B.; JOTHITYANGKOON, D. Wood vinegar and fermented bioextracts: Natural products to enhance growth and yield of tomato (Solanum lycopersicum L.). Scientia Horticulturae, v. 154, p. 66-72, 2013. https://doi.org/10.1016/j.scienta.2013.02.020

NIU, Y. H.; CHEN, Z.; MULLER, C.; ZAMAN, M. M.; KIM, D.; YU, H.; DING, W. Yield-scaled N2O emissions were effectively reduced by biochar amendment of sandy loam soil under maize - wheat rotation in the North China Plain. Atmospheric Environment, v. 170, p. 58-70, 2017. DOI: https://doi.org/10.1016/j.atmosenv.2017.09.050

NÓBREGA, J. A.; ROSA, L. S.; CARVALHO, J. C.; GUERRINO, P.S.P.; BOTERO, E. R. Efeitos da interação entre hidrocarbonetos policíclicos aromáticos contaminantes e o sistema fotossintético da alface (lactuca sativa, l). Brazilian Journal of Animal and Environmental Research, v. 4, n. 2, p. 1582-1593, 2021. DOI: https://doi.org/10.34188

PETROVA, S.; REZEK, J.; SOUDEK, P.; VANEK, T. Preliminary study of phytoremediation of brownfield soil contaminated by PAHs. Science of the Total Environment, v. 599, p. 572-580, 2017. DOI: https://doi.org/10.1016/j.scitotenv.2017.04.163

POLTHANEE, A.; KUMLA, N.; SIMMA, B. Effect of Pistia stratiotes, cattle manure and wood vinegar (pyroligneous acid) application on growth and yield of organic rainfed rice. Paddy and Water Environment, v. 13, n. 4, p. 337-342, 2015.

RANATUNGA, T.; HIRAMATSU, K.; ONISHI, T. Controlling the process of denitrification in flooded rice soils by using microbial fuel cell applications. Agricultural Water Management, v. 206, p. 11-19, 2018. https://doi.org/10.1016/j.agwat.2018.04.041.

REGAZZI, A. J.; SILVA, C. H. O. Testes para verificar a igualdade de parâmetros e a identidade de modelos de regressão não-linear em dados de experimento com delineamento em blocos casualizados. Revista Ceres, v. 57, n. 3, p. 315-320, 2010. DOI: https://doi.org/10.1590/S0034-737X2010000300005

ROCHE, H.; BUET, A.; RAMADE, F. Accumulation of lipophilic microcontaminants and biochemical responses in eels from the Camargue Biosphere Reserve. Ecotoxicology, v. 11, n. 3, p. 155-164, 2002. DOI: 10.1023/a:1015418714492

SCHMID, M. H.; KORTING, H. C. Coal tar, pine tar and sulfonated shale oil preparations: Comparative activity, efficacy and safety. Dermatology, v. 193, n. 1, p. 1-5, 1996. DOI: 10.1159/000246189.

SCHOENY, R.; POIRIER, K. Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons. Washington, DC: U.S. Environmental Protection Agency, Office of Research and Development, Office of Health and Environmental Assessment, 1993. Available: < https://www.epa.gov/sites/production/files/2015-11/documents/pah-rpfs.pdf >.

SCHOKET, B.; KOSA, H. A.; PALDEAK, L.; HEWER, A.; GROVER, P. L.; PHILIPS, P. H. Formation of dna adducts in the skin of psoriasis patients, in human skin in organ-culture, and in mouse skin and lung following topical application of coal-tar and juniper tar. Journal of Investigative Dermatology, v. 94, n. 2, p. 241-246, 1990. DOI: 10.1111/1523-1747.ep12874576

SCIENCEOFCOOKING. Molecules of Taste-Acetic Acid. Available: < http://www.scienceofcooking.com/acetic_acid.htm >.

SENEVIRATNE, G.; VAN HOLM, L. H. J. CO2, CH4 and N2O emissions from a wetted tropical upland soil following surface mulch application. Soil Biology & Biochemistry, v. 30, n. 12, p. 1619-1622, 1998.

SIGMA-ALDRICH. 2-Methoxy-4-methylphenol. 2017a. Available: < http://www.sigmaaldrich.com/catalog/product/aldrich/137316?lang=pt&region=BR >.

SIGMA-ALDRICH. 5-Methylfurfural. 2017b. Available: < http://www.sigmaaldrich.com/catalog/product/aldrich/137316?lang=pt&region=BR >.

SIGMA-ALDRICH. Food and Cosmetic Component Standards. 2017c. Available: < http://www.sigmaaldrich.com/analytical-chromatography/analytical-products.html?TablePage=119198418 >.

SIGMA-ALDRICH. Guaiacol. 2017d. Available: < http://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Product_Information_Sheet/2/g5502pis.pdf >.

SIGUNGA, D. O.; JANSSEN, B. H.; OENEMA, O. Ammonia volatilization from vertisols. European Journal of Soil Science, v. 53, n. 2, p. 195-202, 2002. https://doi.org/10.1046/j.1351-0754.2002.00454.x

STEINER, C.; DAS, K. C.; GARCIA, M.; FORSTER, B; ZECH, W. Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia, v. 51, n. 5-6, p. 359-366, 2008. DOI: https://doi.org/10.1016/j.pedobi.2007.08.002

TIILIKKALA, K.; FAGERNÄS, L.; TIILIKKALA, J. History and use of wood pyrolysis liquids as biocide and plant protection product history and use of wood pyrolysis liquids as biocide and plant protection product. The Open Agriculture Journal, v. 4, p. 111-118, 2010. DOI: 10.2174/1874331501004010111.

VELMURUGAN, N.; CHUN, S. S.; HAN, S. S.; LEE, Y. S. Characterization of chikusaku-eki and mokusaku-eki and its inhibitory effect on sapstaining fungal growth in laboratory scale. International Journal of Environmental Science and Technology, v. 6, n. 1, p. 13-22, 2009. DOI: 10.1007/BF03326056.

YANAI, Y.; TOYOTA, K.; OKAZAKI, M. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Science and Plant Nutrition, v. 53, n. 2, p. 181-188, 2007. DOI: https://doi.org/10.1111/j.1747-0765.2007.00123.x

YANG, J. F.; YANG, C. H.; LIANG, M. T.; GAO, Z. J.; WU, Y. W.; CHUANG, L. Y. Chemical Composition, Antioxidant, and Antibacterial Activity of Wood Vinegar from Litchi chinensis. Molecules, v. 21, n. 9, 2016. DOI: 10.3390/molecules21091150

ZHAI, M.; SHI, G.; WANG, Y.; MAO, G.; WANG, D.; WANG, Z. Chemical compositions and biological activities of pyroligneous acids from walnut shell. Bioresources, v. 10, n. 1, p. 1715-1729, 2015. DOI: 10.15376/BIORES.10.1.1715-1729.

ZHU, H. L.; YI, X.; LIU, Y. HU, H.; WOOD, T. K.; ZHANG, X. Production of acetol from glycerol using engineered Escherichia coli. Bioresource Technology, v. 149, p. 238-243, 2013. DOI: 10.1016/j.biortech.2013.09.062.

Downloads

Publicado

2022-09-19

Como Citar

Morales, M. M., Sartori, W. W., Silva, B. R., Spera, S. T., Mendes, A. B. D., & Papa Ambrosio-Albuquerque, E. (2022). WOOD VINEGAR: CHEMICAL CHARACTERISTICS, PHYTOTOXIC EFFECTS, AND IMPACTS ON GREENHOUSE GAS EMISSIONS. Nativa, 10(3), 400–409. https://doi.org/10.31413/nativa.v10i3.14123

Edição

Seção

Ciências Ambientais / Environmental Sciences

Artigos mais lidos pelo mesmo(s) autor(es)