BLENDS OF ESSENTIAL OILS WITH ANTIMICROBIAL ACTIVITY FOR FOOD PRESERVATION

Autores/as

DOI:

https://doi.org/10.31413/nat.v13i3.19418


Palabras clave:

essential oils, antimicrobial, sensory acceptability, microbial inhibition, optimization, desirability

Resumen

This research evaluated blends of six essential oils (EOs) to maximize their antimicrobial effect without compromising sensory acceptability, aiming to inhibit Pseudomonas aeruginosa (ATCC 33152), Salmonella enteritidis (ATCC 13076), Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923), Klebsiella aerogenes (ATCC 35029), Listeria monocytogenes (ATCC 19114), Aspergillus brasiliensis (ATCC 16404), and Aspergillus niger (ATCC 6275). Thirty-one mixtures of six essential oils: eucalyptus (Eucalyptus globulus Labill.), basil (Ocimum basilicum L.), geranium (Pelargonium graveolens L'Hér.), rosemary (Salvia rosmarinus Spenn.), oregano (Origanum vulgare L.), and lemongrass (Cymbopogon citratus (DC.) Stapf) were proposed and evaluated by measuring the inhibition halo of microbial growth. Through optimization, four new mixtures were evaluated at 100% concentration and four at 5% concentration. Semi-trained panelists assessed these new blends for the most palatable combination by qualitatively selecting their organoleptic properties. Several blends showed desirability values above 0.90, reaching a maximum of 0.9499 for oregano. However, the blend containing rosemary (0.93%), eucalyptus (1.82%), oregano (94.95%), and lemongrass (2.3%) was selected for having the highest average sensory acceptance in terms of desirability ranking and taste preference. All tested samples inhibited fungal growth. The chosen blend showed total inhibition of K. aerogenes and inhibition halos greater than 30 mm for S. typhimurium, E. coli, S. aureus, and L. monocytogenes.

Keywords: essential oils; antimicrobial; sensory acceptability; microbial inhibition; optimization; desirability.

 

Desenvolvimento de filmes biodegradáveis de amido de milho reforçados com nanocelulose para embalagens de alimentos

 

RESUMO: Esta pesquisa avaliou misturas de seis óleos essenciais (OEs) para maximizar seu efeito antimicrobiano sem comprometer a aceitabilidade sensorial, visando inibir Pseudomonas aeruginosa (ATCC 33152), Salmonella enteritidis (ATCC 13076), Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923), Klebsiella aerogenes (ATCC 35029), Listeria monocytogenes (ATCC 19114), Aspergillus brasiliensis (ATCC 16404) e Aspergillus niger (ATCC 6275). Trinta e uma misturas de seis óleos essenciais: eucalipto (Eucalyptus globulus Labill.), manjericão (Ocimum basilicum L.), gerânio (Pelargonium graveolens L'Hér.), alecrim (Salvia rosmarinus Spenn.), orégano (Origanum vulgare L.) e capim-limão (Cymbopogon citratus (DC.) Stapf) foram propostas e avaliadas medindo o halo de inibição do crescimento microbiano. Por meio da otimização, quatro novas misturas foram avaliadas na concentração de 100% e quatro na concentração de 5%. Os painelistas semitreinados avaliaram essas novas misturas para a combinação mais palatável, selecionando qualitativamente suas propriedades organolépticas. Várias misturas apresentaram valores de desejabilidade acima de 0,90, atingindo um máximo de 0,9499 para orégano. Entretanto, a mistura contendo alecrim (0,93%), eucalipto (1,82%), orégano (94,95%) e capim-limão (2,3%) foi selecionada por ter a maior aceitação sensorial média em termos de classificação de desejabilidade e preferência de sabor. Todas as amostras testadas inibiram o crescimento fúngico. A mistura escolhida apresentou inibição total de K. aerogenes e halos de inibição maiores que 30 mm para S. typhimurium, E. coli, S. aureus e L. monocytogenes.

Palavras-chave: óleos essenciais; antimicrobiano; aceitabilidade sensorial; inibição microbiana; otimização; desejabilidade.

Referencias

AKINKUNMI, E. O.; OLADELE, A.; ESHO, O.; ODUSEGUN, I. Effects of storage time on the antimicrobial activities and composition of lemongrass oil. Journal of Applied Research on Medicinal and Aromatic Plants, v. 3, n. 3, p. 105-111, 2016. https://doi.org/10.1016/j.jarmap.2016.02.005

ALMAS, I.; INNOCENT, E.; MACHUMI, F.; KISINZA, W. Chemical composition of essential oils from Eucalyptus globulus and Eucalyptus maculata grown in Tanzania. Scientific African, v. 12, e00758, 2021. https://doi.org/10.1016/j.sciaf.2021.e00758

ALMEIDA, J. M. de; CRIPPA, B. L.; MARTINS, V. V.; PEREZ, V. P.; DA MOTTA, E.; SIQUEIRA, C.; PRATA, A. S.; CIRONE, N. C. Antimicrobial action of oregano, thyme, clove, cinnamon and black pepper essential oils free and encapsulated against foodborne pathogens. Food Control, v. e144, e109356, 2023. https://doi.org/10.1016/j.foodcont.2022.109356

ARAÚJO, H. G. S. de; FITZGERALD, A.; DE OLIVEIRA, A. M.; DE LIMA, P. C.; ARRIGONI-BLANK, M. F.; DE CASTRO, D. A.; DE OLIVEIRA PINTO, J. A. Chemical composition and biological activities of essential oils. Food Chemistry, v. 293, p. 446-454, 2019. https://doi.org/10.1016/j.foodchem.2019.04.078

ARGOTE-VEGA, F.; SUÁREZ-MONTENEGRO, Z. J.; TOVAR-DELGADO, M.; PÉREZ-ÁLVAREZ, J. A.; HURTADO-BENAVIDES, A.; DELGADO-OSPINA, J. Evaluación de la capacidad inhibitoria de aceites esenciales en Staphylococcus aureus and Escherichia coli. Biotecnología en el Sector Agropecuario y Agroindustrial, v. 15, n. SPE2, p. 52-60, 2017. https://www.redalyc.org/pdf/3808/380878983007.pdf

AZIZAH, F.; NURSAKTI, H.; NINGRUM, A.; SUPRIYADI. Development of edible composite film from fish gelatin–pectin incorporated with lemongrass essential oil and its application in chicken meat. Polymers, v. 15, n. 9, e2075, 2023. https://doi.org/10.3390/polym15092075

BARANSKA, M.; SCHULZ, H.; KRUGER, H.; QUILITZSCH, R. Chemotaxonomy of aromatic plants of the genus Origanum via vibrational spectroscopy. Analytical and Bioanalytical Chemistry, v. 381, p. 1241-1247, 2005. https://doi.org/10.1007/s00216-004-3018-y

BEAUBRUN, J. J.; ADDY, N.; KELTNER, Z.; FARRIS, S.; EWING, L.; GOPINATH, G.; HANES, D. E. Evaluation of the impact of varied carvacrol concentrations on Salmonella recovery in oregano and how corn oil can minimize the effect of carvacrol during preenrichment. Journal of Food Protection, v. 81, n. 6, p. 977-985, 2018. https://doi.org/10.4315/0362-028X.JFP-17-489

BOUKHATEM, M. N.; KAMELI, A.; SAIDI, F. Essential oil of Algerian rose-scented geranium (Pelargonium graveolens): chemical composition and antimicrobial activity against food spoilage pathogens. Food Control, v. 34, n. 1, p. 208-213, 2013. https://doi.org/10.1016/j.foodcont.2013.03.045

BRAH, A. S.; OBUAH, C.; ADOKOH, C. K. Innovations and modifications of current extraction methods and techniques of citrus essential oils: a review. Discover Applied Sciences, v. 6, e460, 2024. https://doi.org/10.1007/s42452-024-06100-z

CAO, Y.; ZHOU, D.; ZHANG, X.; XIAO, X.; YU, Y.; LI, X. Synergistic effect of citral and carvacrol and their combination with mild heat against Cronobacter sakazakii CICC 21544 in reconstituted infant formula. LWT, v. 138, e110617, 2021. https://doi.org/10.1016/j.lwt.2020.110617

CEBI, N. Quantification of the geranium essential oil, palmarosa essential oil and phenylethyl alcohol in Rosa damascena essential oil using ATR-FTIR Spectroscopy Combined with Chemometrics. Foods, v. 10, n. 8, e1848, 2021. https://doi.org/10.3390/foods10081848

CHONGO, Y. Extraction methods of bioactive compounds: a sustainability approach. Journal of Food Science and Gastronomy, v. 3, n. 1, p. 29-37, 2025. https://doi.org/10.5281/zenodo.14610634

DE SOUSA, J. P.; DE AZERÊDO, G. A.; DE ARAÚJO, R.; DA SILVA, M. A.; DA CONCEIÇÃO, M. L.; DE SOUZA, E. L. Synergies of carvacrol and 1,8-cineole to inhibit bacteria associated with minimally processed vegetables. International Journal of Food Microbiology, v. 154, n. 3, p. 145-151, 2012. https://doi.org/10.1016/j.ijfoodmicro.2011.12.026

DJAPIC, N. Essential oils of Juglans regia green and yellow leaves. Natural Product Communications, v. 18, n. 7, p. 1-5, 2023. https://doi.org/10.1177/1934578X231191936

DORMAN, H. J. D.; DEANS, S. G. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology, v. 88, p. 308-316, 2008. https://doi.org/10.1046/j.1365-2672.2000.00969.x

DŽAMIĆ, A. M.; SOKOVIĆ, M. D.; RISTIĆ, M. S.; GRUJIĆ, S. M.; MILESKI, K. S.; MARIN, P. D. Chemical composition, antifungal and antioxidant activity of Pelargonium graveolens essential oil. Journal of Applied Pharmaceutical Science, v. 4, n. 3, p. 1-5, 2014. https://doi.org/10.7324/JAPS.2014.40301

FON-FAY, F. M.; GARCÍA, M. A.; FAJARDO, Y.; RODRÍGUEZ, D.; PINO, J. A.; CASARIEGO, A. Coberturas de quitosana con aceite esencial de canela americana (Ocotea quixos) en la conservación de papaya mínimamente procesada. Ciencia y Tecnología de Alimentos, v. 28, n. 2, p. 59-64, 2018.

FRATINI, F.; GIUSTI, M.; MANCINI, S.; PISSERI, F.; NAJAR, B.; PISTELLI, L. Evaluation of the in vitro antibacterial activity of some essential oils and their blends against Staphylococcus spp. isolated from episodes of sheep mastitis. Rendiconti Lincei, v. 32, p. 407-416, 2021. https://doi.org/10.1007/s12210-021-00991-5

GALLUCCI, M. N.; OLIVA, M.; CASERO, C.; DAMBOLENA, J.; LUNA, A.; ZYGADLO, J. Antimicrobial combined action of terpenes against the foodborne microorganisms Escherichia coli, Staphylococcus aureus and Bacillus cereus. Flavour and Fragrance Journal, v. 24, p. 348-354, 2009. https://doi.org/10.1002/ffj.1948

GAVILANEZ, S. A.; ROJAS, J. O. Optimization of the hydroalcoholic extraction process of oregano (Origanum vulgare L.). Journal of Food Science and Gastronomy, v. 2, n. 2, p. 1-7, 2024. https://doi.org/10.5281/zenodo.13996953

GRANATA, G.; STRACQUADANIO, S.; LEONARDI, M.; NAPOLI, E.; CONSOLI, G. M. L.; CAFISO, V.; STEFANI, S.; GERACI, C. Essential oils encapsulated in polymer-based nanocapsules as potential candidates for application in food preservation. Food Chemistry, v. 269, p. 286-292, 2018. https://doi.org/10.1016/j.foodchem.2018.06.140

GUIMARÃES, A. C.; MEIRELES, L. M.; LEMOS, M. F.; GUIMARÃES, M. C. C.; ENDRINGER, D. C.; FRONZA, M.; SCHERER, R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules, v. 24, n. 13, e2471, 2019. https://doi.org/10.3390/molecules24132471

GUTIERREZ, J.; BARRY-RYAN, C.; BOURKE, P. The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. International Journal of Food Microbiology, v. 124, p. 91-97, 2008. https://doi.org/10.1016/j.ijfoodmicro.2008.02.028

HANIF, M. A.; AL-MASKARI, M. Y.; AL-MASKARI, A.; AL-SHUKAILI, A.; AL-MASKARI, A. Y.; AL-SABAHI, J. N. Essential oil composition, antimicrobial and antioxidant activities of unexplored Omani basil. Journal of Medicinal Plants Research, v. 5, n. 5, p. 751-757, 2011. https://5.academicjournals.org/journal/JMPR/article-abstract/F90BF0118882

HELAL, I. M.; EL-BESSOUMY, A.; AL-BATAINEH, E.; JOSEPH, M. R. P.; RAJAGOPALAN, P.; CHANDRAMOORTHY, H. C.; AHMED, S. B. H. Antimicrobial efficiency of essential oils from traditional medicinal plants of Asir region, Saudi Arabia, over drug resistant isolates. BioMed Research International, v. 2019, e8928306, 2019. https://doi.org/10.1155/2019/8928306

HONÓRIO, V. G.; BEZERRA, J.; SOUZA, G. T.; CARVALHO, R. J.; GOMES-NETO, N. J.; FIGUEIREDO, R. C. B. Q.; MELO, J. V.; SOUZA, E. L.; MAGNANI, M. Inhibition of Staphylococcus aureus cocktail using the synergies of oregano and rosemary essential oils or carvacrol and 1,8-cineole. Frontiers in Microbiology, v. 6, e1223, 2015. https://doi.org/10.3389/fmicb.2015.01223

HOSSEINI, F.; MIRI, M. A.; NAJAFI, M.; SOLEIMANIFARD, S.; ARAN, M. Encapsulation of rosemary essential oil in zein by electrospinning technique. Journal of Food Science, v. 86, p. 4070-4086, 2021. https://doi.org/10.1111/1750-3841.15876

IMAEL, H.; BASSOLÉ, N.; JULIANI, H. R. Essential oils in combination and their antimicrobial properties. Molecules, vol. 17, p. 3989-4006, 2012. https://doi.org/10.3390/molecules17043989

INOUYE, S.; YAMAGUCHI, H.; TAKIZAWA, T. Screening of the antibacterial effects of a variety of essential oils on respiratory tract pathogens, using a modified dilution assay method. Journal of Infection and Chemotherapy, v. 7, n. 4, p. 251-254, 2001. https://doi.org/10.1007/s101560170022

KHOLIYA, S.; PUNETHA, A.; UHAN, A. C.; VENKATESHA, K. T.; KUMAR, D.; UPADHYAY, R. K.; PADALIA, R. C. Essential oil yield and composition of Ocimum basilicum L. at different phenological stages, plant density and post-harvest drying methods. South African Journal of Botany, v. 151, p. 919-925, 2022. https://doi.org/10.1016/j.sajb.2022.11.019

KISSELS, W.; WU, X.; SANTOS, R. R. Interaction of the isomers carvacrol and thymol with the antibiotics doxycycline and tilmicosin: in vitro effects against pathogenic bacteria commonly found in the respiratory tract of calves. Journal of Dairy Science, v. 100, n. 2, p. 970-974, 2017. https://doi.org/10.3168/jds.2016-11536

KUMAR, G.; RAJULA, M.; RAO, K.; RAVISHANKAR, P.; ALBAR, D.; BAHAMMAM, M.; ALAMOUDI, A.; ALZAHRANI, K.; ALSHARIF, K.; HALAWANI, I.; ALZAHRANI, F.; ALNFIAI, M.; BAESHEN, H.; PATIL, S. Antimicrobial efficacy of blended essential oil and chlorhexidine against periodontal pathogen (P. gingivalis)-an in vitro study. Nigerian Journal of Clinical Practice, v. 26, n. 5, p. 625-629, 2023. https://doi.org/10.4103/njcp.njcp_787_22

KUMAR, P.; MISHRA, S.; MALIK, A.; SATYA, S. Compositional analysis and insecticidal activity of Eucalyptus globulus (family: Myrtaceae) essential oil against housefly (Musca domestica). Acta Tropica, v. 122, n. 2, p. 212-218, 2012. https://doi.org/10.1016/j.actatropica.2012.01.015

LEITE, S. M. B.; ASSUNÇÃO, E. M. da S.; ALVES, A. V. D. N. G.; MACIEL, E. de S.; PINTO, L. A. de M.; KANEKO, I. N.; GUERRERO, A.; CORREA, A. P. F.; FERNANDES, J. I. M.; LOPES, N. P.; VITAL, M. J. S.; MONTESCHIO, J. O. Incorporation of copaiba and oregano essential oils on the shelf life of fresh ground beef patties under display: evaluation of their impact on quality parameters and sensory attributes. PloS One, v. 17, n. 8, e0272852, 2022. https://doi.org/10.1371/journal.pone.0272852

MAJDA, B.; BARCHAN, A.; AARAB, A.; BAKKALI, M., ARAKRAK, A.; LAGLAOUI, A. Evaluation of the antibacterial activity of essential oils against E. Coli isolated from rabbits. Iraqi Journal of Agricultural Sciences, v. 53, n. 4, p. 802-809, 2022. https://doi.org/10.36103/ijas.v53i4.1592

MEHRABANI, M.; GOLNARAGHI, A.; HOSEINI, O. Study of antibacterial and synergistic activities of Cinnamomum verum, Eucalyptus camaldulensis and Zataria multiflora Boiss. in Persian medicine against some Gram-negative and Gram-positive pathogenic bacteria. Egyptian Journal of Veterinary Sciences, v. 53, n. 1, p. 87-97, 2022. https://doi.org/10.21608/ejvs.2021.98049.1301

MEJLHOLM, O.; DALGAARD, P. Antimicrobial effect of essential oils on the seafood spoilage micro-organism Photobacterium phosphoreum in liquid media and fish products. Letters in Applied Microbiology, v. 34, n. 1, p. 27-31, 2002. https://doi.org/10.1046/j.1472-765x.2002.01033.x

MOKHTAR, L. M.; SALIM, I. A.; ALOTAIBI, S. N.; AWAJI, E. A.; ALOTAIBI, M. M.; DOMAN, A. O. Phytochemical screening and antimicrobial activity of methanolic extract of Cymbopogon schoenanthus (L.) (azkhar) collected from Afif City, Saudi Arabia. Life, v. 13, n. 7, 1451, 2023. https://doi.org/10.3390/life13071451

MOUREY, A.; CANILLAC, N. Anti-Listeria monocytogenes activity of essential oils components of conifers. Food Control, v. 13, n. 4-5, p. 289-292, 2002. https://doi.org/10.1016/S0956-7135(02)00026-9

NASCIMENTO, M. N. G.; JUNQUEIR, J. G. M.; TEREZAN, A. P.; SEVERINO, R. P.; SILVA, T. S.; MARTINS, C. H. G.; SEVERINO, V. G. P. Chemical composition and antimicrobial activity of essential oils from Xylopia aromatica (Annonaceae) flowers and leaves. Revista Virtual de Química, v. 10, n. 5, p. 1578-1590, 2018. https://www.scielo.br/j/aabc/a/rQg4bbCfhQJMhXdfd35gJsR/?lang=en

NGUYEN, L. T. K.; DOAN, T. Q.; NGUYEN, P. Q. D.; NGUYEN, C. B. H.; TRAN, L. T. T.; TRAN, T. V. A.; NGUYEN, H. T.; HO, D. V. Phytochemical composition and bioactivities of essential oils from rhizomes of Homalomena pendula and Homalomena cochinchinensis. Natural Product Communications, v. 18, n. 5, p. 1-6, 2023. https://doi.org/10.1177/1934578X231175263

NTE INEN 35-1. Método del picnómetro para determinar la densidad relativa de líquidos. Quito, Ecuador: Instituto Ecuatoriano de Normalización, 2012. 5p.

NTE INEN-ISO 6320. Aceites y grasas de origen animal y vegetal. Determinación del índice de refracción (IDT). Quito, Ecuador: Instituto Ecuatoriano de Normalización, 2013. 7p.

OLOPADE, B. K.; ORANUSI, S. U.; NWINYI, O. C.; LAWAL, I. A.; GBASHI, S.; NJOBEH, P. B. Decontamination of T-2 toxin in maize by modified montmorillonite clay. Toxins, v. 11, n. 11, e616, 2019. https://doi.org/10.3390/toxins11110616

OUATTARA, B.; SIMARD, R. E.; HOLLEY, R. A.; PIETTE, G. J. P.; BÉGIN, A. Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. International Journal of Food Microbiology, v. 37, n. 2-3, p. 155-162, 1997. https://doi.org/10.1016/s0168-1605(97)00070-6

OUEDRHIRI, W.; MECHCHATE, H.; MOJA, S.; MOTHANA, R. A.; NOMAN, O. M.; GRAFOV, A.; GRECHE, H. Boosted antioxidant effect using a combinatory approach with essential oils from Origanum compactum, Origanum majorana, Thymus serpyllum, Mentha spicata, Myrtus communis, and Artemisia herba-alba: mixture design optimization. Plants, v. 10, n. 12, e2817, 2021. https://doi.org/10.3390/plants10122817

PANDEY, A. K.; SINGH, P.; TRIPATHI, N. N. Overview of chemistry and bioactivities of essential oils of some Ocimum species: an overview. Asian Pacific Journal of Tropical Biomedicine, v. 4, n. 9, p. 682-694, 2014. https://doi.org/10.12980/APJTB.4.2014C77

PARTHENIADIS, I.; KARAKASIDOU, P.; VERGKIZI, S.; NIKOLAKAKIS, I. Spectroscopic examination and release of microencapsulated oregano essential oil. ADMET and DMPK, v. 5, n. 4, p. 224-233, 2017. https://doi.org/10.5599/admet.5.4.426

PERVEEN, K.; BOKHARI, N. A.; AL-RASHID, S. A. I.; AL-HUMAID, L. A. Chemical composition of essential oil of Ocimum basilicum L. and its potential in managing the Alternaria rot of tomato. Journal of Essential Oil Bearing Plants, v. 23, n. 6, p. 1428-1437, 2020. https://doi.org/10.1080/0972060X.2020.1868351

QUIJANO-CÉLIS, C.; GAVIRIA, M.; VANEGAS-LÓPEZ, C.; PINO, J. A. Chemical composition and antibacterial activity of the essential oil of Callistemon viminalis (Gaertn.) G. Don leaves from Colombia. Journal of Essential Oil Bearing Plants, v. 13, n. 6, p. 710-716, 2010. https://doi.org/10.1080/0972060X.2010.10643883

RAJENDRA, N.; ANANDI, C.; BALASUBRAMANIAN, S.; PUGALENDI, K. V. Antidermatophytic activity of extracts from Psoralea corylifolia (Fabaceae) correlated with the presence of a flavonoid compound. Journal of Ethnopharmacology, v. 91, n. 1, p. 21-24, 2004. https://doi.org/10.1016/j.jep.2003.11.010

RAUT, J. S.; KARUPPAYIL, S. M. A status review on the medicinal properties of essential oils. Industrial Crops and Products, v. 62, p. 250-264, 2014. https://doi.org/10.1016/j.indcrop.2014.05.055

RODRÍGUEZ, D. Advances in rapid and traditional methods for microbiological control in food: a comprehensive approach to food safety. Journal of Advances in Education, Sciences and Humanities, v. 2, n. 2, p. 29-34, 2024. https://doi.org/10.5281/zenodo.14629941

RODRÍGUEZ, D.; SAMANIEGO-PUERTAS, V. B. Hygienic management in hotel facilities, food safety, and service quality. Journal of Advances in Education, Sciences and Humanities, v. 1, n. 2, p. 26-33, 2023. https://doi.org/10.5281/zenodo.14602168

SALVO, A.; LOREDANA, G.; ROTONDO, A.; CICERO, N.; GARGANO, R.; MANGANO, V.; CASALE, K.; DUGO, G. Multiple analytical approaches for the organic and inorganic characterization of Origanum vulgare L. samples. Natural Product Research, v. 33, n. 19, p. 2815-2822, 2018. https://doi.org/10.1080/14786419.2018.1503269

SARASWATHI, J.; VENKATESH, K.; BABURAO, N.; HILAL, M. H.; ROJA RANI, A. Phytopharmacological importance of Pelargonium species. Journal of Medicinal Plants Research, v. 5, n. 13, p. 2587-2598, 2011. https://api.semanticscholar.org/CorpusID:55727005

SARMOUM, R.; HAID, S.; BICHE, M.; DJAZOULI, Z.; ZEBIB, B.; MERAH, O. Effect of salinity and water stress on the essential oil components of rosemary (Rosmarinus officinalis L.). Agronomy, v. 9, n. 5, e214, 2019. https://doi.org/10.3390/agronomy9050214

SATTARY, M.; AMINI, J.; HALLAJ, R. Antifungal activity of the lemongrass and clove oil encapsulated in mesoporous silica nanoparticles against wheat's take-all disease. Pesticide Biochemistry and Physiology, v. 170, e104696, 2020. https://doi.org/10.1016/j.pestbp.2020.104696

SHANKAR, S.; PRASAD, S.; OWAIZ, M.; YADAV, S.; MANHAS, S.; YAQOOB, M. Essential oils, components and their applications: A review. Plant Archives, v. 21, n. 1, p. 2027-2033, 2021. https://doi.org/10.51470/PLANTARCHIVES.2021.v21.S1.331

SOLÍS-QUISPE, L.; PINO, J. A.; TOMAYLLA-CRUZ, C.; SOLÍS-QUISPE, J. A.; ARAGÓN-ALENCASTRE, L. J. Essential oil from Senecio rudbeckiifolius Meyen & Walp.: chemical analysis, antioxidant assessment, and literature review of Senecio essential oils. Afinidad: Revista de Química Teórica y Aplicada, v. 80, n. 600, p. 267-275, 2023. https://doi.org/10.55815/422402

STRAMARKOU, M.; OIKONOMOPOULOU, V.; MISSIRLI, T.; THANASSOULIA, I.; KROKIDA, M. Encapsulation of rosemary essential oil into biodegradable polymers for application in crop management. Journal of Polymers and the Environment, v. 28, p. 2161-2177, 2020. https://doi.org/10.1007/s10924-020-01760-5

TANG, Y.; LI, H.; SONG, Q. Lemongrass essential oil and its major component citronellol: evaluation of larvicidal activity and acetylcholinesterase inhibition against Anopheles sinensis. Parasitology Research, v. 123, e315, 2024. https://doi.org/10.1007/s00436-024-08338-3

TSIGARIDA, E.; SKANDAMIS, P.; NYCHAS, G. J. E. Behaviour of Listeria monocytogenes and autochthonous flora on meat stored under aerobic, vacuum and modified atmosphere packaging conditions with or without the presence of oregano essential oil at 5 degrees C. Journal of Applied Microbiology, v. 89, n. 6, p. 901-909, 2000. https://doi.org/10.1046/j.1365-2672.2000.01170.x

ULTEE, A.; SLUMP, R. A.; STEGING, G. Antimicrobial activity of carvacrol toward Bacillus cereus on rice. Journal of Food Protection, v. 63, n. 5, p. 620-624, 2000. https://doi.org/10.4315/0362-028x-63.5.620

WANI, A. R.; YADAV, K.; KHURSHEED, A.; RATHER, M. A. An updated and comprehensive review of the antiviral potential of essential oils and their chemical constituents with special focus on their mechanism of action against various influenza and coronaviruses. Microbial Pathogenesis, v. 152, e104620, 2021. https://doi.org/10.1016/j.micpath.2020.104620

ZHANG, H.; HUANG, T.; LIAO, X.; ZHOU, Y.; CHEN, S.; CHEN, J.; XIONG, W. Extraction of camphor tree essential oil by steam distillation and supercritical CO2 extraction. Molecules, v. 27, n. 17, e5385, 2022. https://doi.org/10.3390/molecules27175385

Descargas

Publicado

2025-09-18

Número

Sección

Bioprospecção e Biotecnologia / Bioprospecting and Biotechnology

Cómo citar

BLENDS OF ESSENTIAL OILS WITH ANTIMICROBIAL ACTIVITY FOR FOOD PRESERVATION. (2025). Nativa, 13(3), 503-515. https://doi.org/10.31413/nat.v13i3.19418

Artículos más leídos del mismo autor/a