DEVELOPMENT OF CORN STARCH BIODEGRADABLE FILMS REINFORCED BY NANOCELLULOSE FOR FOOD PACKAGING
DOI:
10.31413/nat.v12i4.17718Palavras-chave:
biodegradable films, starch, mechanical propertiesResumo
ABSTRACT: The present paper evaluates the mechanical and physical characteristics of edible films made from corn starch (Zea mays L.) reinforced with nanocellulose. To do this, films were made with 0.4 and 0.08% cotton nanocellulose (NC) with plasticizer (0.4 and 1%). The mixture was emulsified between 1 and 3 min and dried for 20 h (36 and 50 °C). NC was obtained by acid hydrolysis for 6 days at 25 °C with 50% sulfuric acid and dialyzed to neutral pH. Cotton NC and NC-included film were analyzed using Fourier transform infrared spectroscopy. About the physical characteristics, it will be observed that there was no significant difference between the inclusion percentages. Accordingly, a 5% inclusion would be sufficient for smooth, transparent, flexible, non-cracked and homogeneous films. It is determined that the higher the percentage of NC, the lower the elasticity values, improving the films' hardness and transparency. Given that the percentage present in the NC test solution is 1.6%, its inclusion would be 0.4% (25 ml NC) and 0.08% (5 ml NC), indicating its great influence on films.
Keywords: biodegradable fimls; starch; mechanical properties.
Desenvolvimento de filmes biodegradáveis de amido de milho reforçados com nanocelulose para embalagens de alimentos
RESUMO: No presente trabalho são avaliadas as características mecânicas e físicas de filmes comestíveis elaborados a partir de amido de milho (Zea mays L.) reforçados com nanocelulose. Para isso foram confeccionados filmes com 0,4 e 0,08% de nanocelulose de algodão (NC) com plastificante (0,4 e 1%): A mistura foi emulsionada entre 1 e 3 min e seca por 20 h (36 e 50 °C). A NC foi obtida por hidrólise ácida durante 6 dias a 25 °C com ácido sulfúrico a 50% e dialisada até pH neutro. Algodão NC e filmes incluídos em NC foram analisados por espectroscopia de infravermelho com transformada de Fourier. Em relação às características físicas, observar-se-á que não houve diferença significativa entre os percentuais de inclusão. Assim, uma inclusão de 5% seria suficiente para obter filmes lisos, transparentes, flexíveis, não fissurados e homogêneos. Determina-se que quanto maior o percentual de NC, os valores de elasticidade diminuem, melhorando a dureza e a transparência dos filmes. Dado que a percentagem presente na solução teste NC é de 1,6%, a sua inclusão seria de 0,4% (25 ml NC) e 0,08% (5 ml NC), o que indica a grande influência que tem nos filmes.
Palavras-chave: filmes biodegradáveis; amido; propriedades mecânicas.
Referências
ALMEIDA, T.; KARAMYSHEVA, A.; VALENTE, B. F. A.; SILVA, J. M.; BRAZ, M.; ALMEIDA, A.; SILVESTRE, A. J. D.; VILELA, C.; FREIRE, C. S. R. Biobased ternary films of thermoplastic starch, bacterial nanocellulose and gallic acid for active food packaging. Food Hydrocolloids, v. 144, E108934, 2023. https://doi.org/10.1016/j.foodhyd.2023.108934
ANCHUNDIA, K.; SANTACRUZ, S.; COLOMA, J. Caracterización física de películas comestibles a base de cáscara de plátano (Musa paradisiaca). Revista Chilena de Nutrición, v. 43, n. 4, p. 394-399, 2016. https://doi.org/10.4067/S0717-75182016000400009
AOAC. Official Method of Analysis: Association of Analytical Chemists. 19th ed. Washington DC: AOAC 925.10, 2012. p. 121-130.
BAGDE, P.; NADANATHANGAM, V. Mechanical, antibacterial and biodegradable properties of starch film containing bacteriocin immobilized crystalline nanocellulose. Carbohydrate Polymers, v. 222, 115021, 2019. https://doi.org/10.1016/j.carbpol.2019.115021
CHEN, Y.; YU, L.; GE, X.; LIU, H.; ALI, A.; WANG, Y.; CHEN, L. Preparation and characterization of edible starch film reinforced by laver. International Journal of Biological Macromolecules, v. 129, p. 944-951, 2019. https://doi.org/10.1016/j.ijbiomac.2019.02.045
CHIUMARELLI, M.; HUBINGER, M. D. Evaluation of edible films and coatings formulated with cassava starch, glycerol, carnauba wax and stearic acid. Food Hydrocolloids, v. 38, p. 20-27, 2014. https://doi.org/10.1016/j.foodhyd.2013.11.013
COPELAND, L.; BLAZEK, J.; SALMAN, H.; TANG, M.C. Form and functionality of starch. Food Hydrocolloids, v. 23, n. 6, p. 1527-1534, 2009. https://doi.org/10.1016/j.foodhyd.2008.09.016
DA SILVA, J. B. A.; PEREIRA, F. V.; DRUZIAN, J. I. Cassava starch-based films plasticized with sucrose and inverted sugar and reinforced with cellulose nanocrystals. Journal of Food Science, v. 77, n. 6, p. 14-19, 2012. https://doi.org/10.1111/j.1750-3841.2012.02710.x
DE ANDRADE, M. R.; NERY, T. B. R.; DE SANTANA, E.; SANTANA, T. I.; LEAL, I. L.; RODRIGUES, L. A. P.; DE OLIVEIRA REIS, J. H.; DRUZIAN, J. I.; MACHADO, B. A. S. Effect of Cellulose Nanocrystals from Different Lignocellulosic Residues to Chitosan/Glycerol Films. Polymers, v. 11, n. 4, e658, 2019. https://doi.org/10.3390/polym11040658
DONG, X. M.; KIMURA, T.; REVOL, J. F.; GRAY, D. G. Effects of ionic strength on the phase separation of suspensions of cellulose crystallites. Langmuir, v. 12, p. 2076-2082, 1996. https://doi.org/10.1021/la950133b
FANG, Y.; FU, J.; TAO, C.; LIU, P.; CUI, B. Mechanical properties and antibacterial activities of novel starch-based composite films incorporated with salicylic acid. International Journal of Biological Macromolecules, v. 155, p. 1350-1358, 2019. https://doi.org/10.1016/j.ijbiomac.2019.11.110
FARAJPOUR, R.; DJOMEH, Z. E.; MOEINI, S.; TAVAHKOLIPOUR, H.; SAFAYAN, S. Structural and physico-mechanical properties of potato starch-olive oil edible films reinforced with zein nanoparticles. International Journal of Biological Macromolecules, v. 149, p. 941-950, 2020. https://doi.org/10.1016/j.ijbiomac.2020.01.175
GHANBARI, A.; TABARSA, T.; ASHORI, A.; SHAKERI, A.; MASHKOUR, M. Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: extrusion processing. International Journal of Biological Macromolecules, v. 112, p. 442-447, 2018. https://doi.org/10.1016/j.ijbiomac.2018.02.007
GÓMEZ, H. C.; SERPA, A.; VELÁSQUEZ-COCK, J.; GAÑÁN, P.; CASTRO, C.; VÉLEZ, L.; ZULUAGA, R. Vegetable nanocellulose in food science: a review. Food Hydrocolloids, v. 57, p. 178-186, 2016. https://doi.org/10.1016/j.foodhyd.2016.01.023
GRAY, N.; HAMZEH, Y.; KABOORANI, A.; ABDULKHANI, A. Influence of cellulose nanocrystal on strength and properties of low density polyethylene and thermoplastic starch composites. Industrial Crops and Products, v. 115, p. 298-305, 2018. https://doi.org/10.1016/j.indcrop.2018.02.017
HABIBI, Y.; LUCIA, L. A.; ROJAS, O. J. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews, v. 110, n. 6, p. 3479-3500, 2010. https://doi.org/10.1021/cr900339w
HESSLER, L. E.; MEROLA, G. V. Determination of cellulose in cotton and cordage fiber. Analytical Chemistry, v. 21, n. 6, p. 695-698, 1949. https://doi.org/10.1021/ac60030a014
IKEM, A.; ODUMOSU, P. O.; UDOUSORO, I. Elemental composition of cereal grains and the contribution to the dietary intake in the Nigerian population. Journal of Food Composition and Analysis, v. 118, e105207, 2023. https://doi.org/10.1016/j.jfca.2023.105207
JIMÉNEZ, A.; HERNÁNDEZ, K. L.; COLLAHUAZO-REINOSO, Y.; AVILÉS, R.; PINO, J. A.; GARCÍA, M. A. Película comestible a partir de cáscara de plátano macho (Musa paradisiaca L.). Ciencia y Tecnología de Alimentos, v. 29, n. 3, p. 49-57, 2019.
JOSHI, M.; ADAK, B.; BUTOLA, B. S. Polyurethane nanocomposite based gas barrier films, membranes and coatings: a review on synthesis, characterization and potential applications. Progress in Materials Science, v. 97, p. 230-282, 2018. https://doi.org/10.1016/j.pmatsci.2018.05.001
LOMELÍ-RAMÍREZ, M. G.; VALDEZ-FAUSTO, E. M.; RENTERÍA-URQUIZA, M.; JIMÉNEZ-AMEZCUA, R. M.; ANZALDO, J.; TORRES-RENDON, J. G.; GARCÍA, S. Study of green nanocomposites based on corn starch and cellulose nanofibrils from Agave tequilana Weber. Carbohydrate Polymers, v. 201, p. 9-19, 2018. https://doi.org/10.1016/j.carbpol.2018.08.045
MAHARDIKA, M.; ABRAL, H.; KASIM, A.; ARIEF, S.; HAFIZULHAQ, F.; ASROFI, M. Properties of cellulose nanofiber/bengkoang starch bionanocomposites: effect of fiber loading. LWT, v. 116, e108554, 2019. https://doi.org/10.1016/j.lwt.2019.108554
MEESORN, W.; SHIROLE, A.; VANHECKE, D.; DE ESPINOSA, L. M.; WEDER, C. A simple and versatile strategy to improve the mechanical properties of polymer nanocomposites with cellulose nanocrystals. Macromolecules, v. 50, n. 6, p. 2364-2374, 2017. https://doi.org/10.1021/acs.macromol.6b02629
MÜLLER, C. M. O.; LAURINDO, J. B.; YAMASHITA, F. Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films. Industrial Crops and Products, v. 33, n. 3, p. 605-610, 2011. https://doi.org/10.1016/j.indcrop.2010.12.021
NOBBMANN, U.; MORFESIS, A. Light scattering and nanoparticles. Materials Today, v. 12, n. 5, p. 52-54, 2009. https://doi.org/10.1016/S1369-7021(09)70164-6
PELISSARI, F. M.; ANDRADE-MAHECHA, M. M.; SOBRAL, P. J. A.; MENEGALLI, F. C. Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels. Journal of Colloid and Interface Science, v. 505, p. 154-167, 2017. https://doi.org/10.1016/j.jcis.2017.05.106
PULIDO, E.; MORALES, B.; ZAMUDIO, M.; LUGO, F. Obtención y caracterización de nanocelulosa a partir de tule (Typha domingensis). Revista de Energía Química y Física, v. 3, n. 6, p. 31-38, 2016.
RHIM, J. W.; NG, P. K. W. Natural biopolymer-based nanocomposite films for packaging applications. Critical Reviews in Food Science and Nutrition, v. 47, n. 4, p. 411-433, 2007. https://doi.org/10.1080/10408390600846366
SAVADEKAR, N. R.; MHASKE, S. T. Synthesis of nanocellulose fibers and effect on thermoplastics starch based films. Carbohydrate Polymers, v. 89, n. 1, p. 146-151, 2012. https://doi.org/10.1016/j.carbpol.2012.02.063
SCHAEFER, E. W.; PAVONI, J. M.; LUCHESE, C. L.; LUVIZETTO, D. J.; TESSARO, I. C. Influence of turmeric incorporation on physicochemical, antimicrobial and mechanical properties of the cornstarch and chitosan films. International Journal of Biological Macromolecules, v. 148, p. 342-50, 2020. https://doi.org/10.1016/j.ijbiomac.2020.01.148
SCHMIDT, G.; MALWITZ, M. M. Properties of polymer-nanoparticle composites. Current Opinion in Colloid & Interface Science, v. 8, p. 103-108, 2003. https://doi.org/10.1016/S1359-0294(03)00008-6
SHARMA, C.; DHIMAN, R.; ROKANA, N.; PANWAR, H. Nanotechnology: An untapped resource for food packaging. Frontiers in Microbiology, v. 8, e1735, 2017. https://doi.org/10.3389/fmicb.2017.01735
SLAVUTSKY, A. M.; BERTUZZI, M. A. Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse. Carbohydrate Polymers, v. 110, p. 53-61, 2014. https://doi.org/10.1016/j.carbpol.2014.03.049
SOLTES DE ALMEIDA, V.; RUIVO, B.; ITO, V. C.; MALUCELLI, L.; DA SILVA, M. A.; DEMIATE, I. M.; PINHEIRO, L. A.; LACERDA, L. G. Thermal, Morphological, and Mechanical Properties of Regular and Waxy Maize Starch Films Reinforced with Cellulose Nanofibers (CNF). Materials Research, v. 23, n. 2, e20190576, 2020. https://doi.org/10.1590/1980-5373-MR-2019-0576
SOUSA, L.; LOPES, J. F.; DUTRA, J. W. A.; PEREIRA, A. I. S. Películas de mandioca reforzada con nanocelulosa y adición de aceite de burití (Mauritia flexuosa L.). Revista ION, v. 36, n. 3, p. 53-62, 2023. https://doi.org/10.18273/revion.v36n3-2023005
SYAFRI, E.; SUDIRMAN, M.; YULIANTI, E.; DESWITA; ASROFI, M.; ABRAL, H.; SAPUAN, S. M.; ILYAS, R. A.; FUDHOLI, A. Effect of sonication time on the thermal stability, moisture absorption, and biodegradation of water hyacinth (Eichhornia crassipes) nanocellulose-filled bengkuang (Pachyrhizus erosus) starch biocomposites. Journal of Materials Research and Technology, v. 8, n. 6, p. 6223-6231, 2019. https://doi.org/10.1016/j.jmrt.2019.10.016
TEODORO, A. P.; MALI, S.; ROMERO, N.; DE CARVALHO, G. M. Cassava starch films containing acetylated starch nanoparticles as reinforcement: physical and mechanical characterization. Carbohydrate Polymers, v. 126, p. 9-16, 2015. https://doi.org/10.1016/j.carbpol.2015.03.021
TETLOW, I. J.; MORELL, M. K.; EMES, M. J. Recent developments in understanding the regulation of starch metabolism in higher plants. Journal of Experimental Botany, v. 55, n. 406, 2131-2145, 2004. https://doi.org/10.1093/jxb/erh248
TIMHADJELT, L.; SERIER, A.; BELGACEM, M. N.; BRAS, J. Elaboration of cellulose based nanobiocomposite: Effect of cellulose nanocrystals surface treatment and interface «melting». Industrial Crops and Products, v. 72, p. 7-15, 2015. https://doi.org/10.1016/j.indcrop.2015.02.040
TRIVIÑO, A. B.; VILLENA, N. P. La industria del maíz y su incidencia en la matriz productiva del Ecuador en el período 2013-2017. Revista Espacios, v. 40, n. 14, p. 1-14, 2019.
WANG, Z.; YAO, Z.; ZHOU, J.; HE, M.; JIANG, Q.; LI, A.; LI, S.; LIU, M.; LUO, S.; ZHANG, D. Improvement of polylactic acid film properties through the addition of cellulose nanocrystals isolated from waste cotton cloth. International Journal of Biological Macromolecules, v. 129, p. 878-886, 2019. https://doi.org/10.1016/j.ijbiomac.2019.02.021
YU, J. K.; MOON, Y. S. Corn starch: quality and quantity improvement for industrial uses. Plants, v. 11, n. 1, e92, 2022. https://doi.org/10.3390/plants11010092
YU, Z.; ALSAMMARRAIE, F. K.; NAYIGIZIKI, F. X.; WANG, W.; VARDHANABHUTI, B.; MUSTAPHA, A.; LIN, M. Effect and mechanism of cellulose nanofibrils on the active functions of biopolymer-based nanocomposite films. Food Research International, v. 99, p. 166-172, 2017. https://doi.org/10.1016/j.foodres.2017.05.009
ZARA, J.; YEGRES, F.; VARGAS, N.; MORALES, S.; CUBILLAN, L. Empleo de la Espectroscopia Infrarroja (FT-IR-ATR) como herramienta para la caracterización del bagazo de caña proveniente de la Sierra Falconiana. Química Viva, v. 16, p. 17-24, 2017.
ZINGE, C.; KANDASUBRAMANIAN, B. Nanocellulose based biodegradable polymers. European Polymer Journal, v. 133, e109758, 2020. https://doi.org/10.1016/j.eurpolymj.2020.109758
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Nativa

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Direitos Autorais para artigos publicados nesta revista são do autor, com direitos de primeira publicação para a revista. Em virtude de a aparecerem nesta revista de acesso público, os artigos são de uso gratuito, com atribuições próprias, em aplicações educacionais e não-comerciais.
A artigos publicados nessa revista, podem ser reproduzidos parcialmente ou utilizados como referência por outros autores, desde que seja cita a fonte, ou seja, a Revista Nativa.
Copyright for articles published in this journal are the authors, with first publication rights granted to the journal. The journal shows open access, and articles are free to use, with proper attribution, in educational and non-commercial.
The articles published in this journal may be reproduced in part or used as a reference by other authors, provided that the source is quoted.