DEVELOPMENT OF CORN STARCH BIODEGRADABLE FILMS REINFORCED BY NANOCELLULOSE FOR FOOD PACKAGING

Autores

DOI:

10.31413/nat.v12i4.17718

Palavras-chave:

biodegradable films, starch, mechanical properties

Resumo

ABSTRACT: The present paper evaluates the mechanical and physical characteristics of edible films made from corn starch (Zea mays L.) reinforced with nanocellulose. To do this, films were made with 0.4 and 0.08% cotton nanocellulose (NC) with plasticizer (0.4 and 1%). The mixture was emulsified between 1 and 3 min and dried for 20 h (36 and 50 °C). NC was obtained by acid hydrolysis for 6 days at 25 °C with 50% sulfuric acid and dialyzed to neutral pH. Cotton NC and NC-included film were analyzed using Fourier transform infrared spectroscopy. About the physical characteristics, it will be observed that there was no significant difference between the inclusion percentages. Accordingly, a 5% inclusion would be sufficient for smooth, transparent, flexible, non-cracked and homogeneous films. It is determined that the higher the percentage of NC, the lower the elasticity values, improving the films' hardness and transparency. Given that the percentage present in the NC test solution is 1.6%, its inclusion would be 0.4% (25 ml NC) and 0.08% (5 ml NC), indicating its great influence on films.

Keywords: biodegradable fimls; starch; mechanical properties.

 

Desenvolvimento de filmes biodegradáveis de amido de milho reforçados com nanocelulose para embalagens de alimentos

 

RESUMO: No presente trabalho são avaliadas as características mecânicas e físicas de filmes comestíveis elaborados a partir de amido de milho (Zea mays L.) reforçados com nanocelulose. Para isso foram confeccionados filmes com 0,4 e 0,08% de nanocelulose de algodão (NC) com plastificante (0,4 e 1%): A mistura foi emulsionada entre 1 e 3 min e seca por 20 h (36 e 50 °C). A NC foi obtida por hidrólise ácida durante 6 dias a 25 °C com ácido sulfúrico a 50% e dialisada até pH neutro. Algodão NC e filmes incluídos em NC foram analisados por espectroscopia de infravermelho com transformada de Fourier. Em relação às características físicas, observar-se-á que não houve diferença significativa entre os percentuais de inclusão. Assim, uma inclusão de 5% seria suficiente para obter filmes lisos, transparentes, flexíveis, não fissurados e homogêneos. Determina-se que quanto maior o percentual de NC, os valores de elasticidade diminuem, melhorando a dureza e a transparência dos filmes. Dado que a percentagem presente na solução teste NC é de 1,6%, a sua inclusão seria de 0,4% (25 ml NC) e 0,08% (5 ml NC), o que indica a grande influência que tem nos filmes.

Palavras-chave: filmes biodegradáveis; amido; propriedades mecânicas.

Referências

ALMEIDA, T.; KARAMYSHEVA, A.; VALENTE, B. F. A.; SILVA, J. M.; BRAZ, M.; ALMEIDA, A.; SILVESTRE, A. J. D.; VILELA, C.; FREIRE, C. S. R. Biobased ternary films of thermoplastic starch, bacterial nanocellulose and gallic acid for active food packaging. Food Hydrocolloids, v. 144, E108934, 2023. https://doi.org/10.1016/j.foodhyd.2023.108934

ANCHUNDIA, K.; SANTACRUZ, S.; COLOMA, J. Caracterización física de películas comestibles a base de cáscara de plátano (Musa paradisiaca). Revista Chilena de Nutrición, v. 43, n. 4, p. 394-399, 2016. https://doi.org/10.4067/S0717-75182016000400009

AOAC. Official Method of Analysis: Association of Analytical Chemists. 19th ed. Washington DC: AOAC 925.10, 2012. p. 121-130.

BAGDE, P.; NADANATHANGAM, V. Mechanical, antibacterial and biodegradable properties of starch film containing bacteriocin immobilized crystalline nanocellulose. Carbohydrate Polymers, v. 222, 115021, 2019. https://doi.org/10.1016/j.carbpol.2019.115021

CHEN, Y.; YU, L.; GE, X.; LIU, H.; ALI, A.; WANG, Y.; CHEN, L. Preparation and characterization of edible starch film reinforced by laver. International Journal of Biological Macromolecules, v. 129, p. 944-951, 2019. https://doi.org/10.1016/j.ijbiomac.2019.02.045

CHIUMARELLI, M.; HUBINGER, M. D. Evaluation of edible films and coatings formulated with cassava starch, glycerol, carnauba wax and stearic acid. Food Hydrocolloids, v. 38, p. 20-27, 2014. https://doi.org/10.1016/j.foodhyd.2013.11.013

COPELAND, L.; BLAZEK, J.; SALMAN, H.; TANG, M.C. Form and functionality of starch. Food Hydrocolloids, v. 23, n. 6, p. 1527-1534, 2009. https://doi.org/10.1016/j.foodhyd.2008.09.016

DA SILVA, J. B. A.; PEREIRA, F. V.; DRUZIAN, J. I. Cassava starch-based films plasticized with sucrose and inverted sugar and reinforced with cellulose nanocrystals. Journal of Food Science, v. 77, n. 6, p. 14-19, 2012. https://doi.org/10.1111/j.1750-3841.2012.02710.x

DE ANDRADE, M. R.; NERY, T. B. R.; DE SANTANA, E.; SANTANA, T. I.; LEAL, I. L.; RODRIGUES, L. A. P.; DE OLIVEIRA REIS, J. H.; DRUZIAN, J. I.; MACHADO, B. A. S. Effect of Cellulose Nanocrystals from Different Lignocellulosic Residues to Chitosan/Glycerol Films. Polymers, v. 11, n. 4, e658, 2019. https://doi.org/10.3390/polym11040658

DONG, X. M.; KIMURA, T.; REVOL, J. F.; GRAY, D. G. Effects of ionic strength on the phase separation of suspensions of cellulose crystallites. Langmuir, v. 12, p. 2076-2082, 1996. https://doi.org/10.1021/la950133b

FANG, Y.; FU, J.; TAO, C.; LIU, P.; CUI, B. Mechanical properties and antibacterial activities of novel starch-based composite films incorporated with salicylic acid. International Journal of Biological Macromolecules, v. 155, p. 1350-1358, 2019. https://doi.org/10.1016/j.ijbiomac.2019.11.110

FARAJPOUR, R.; DJOMEH, Z. E.; MOEINI, S.; TAVAHKOLIPOUR, H.; SAFAYAN, S. Structural and physico-mechanical properties of potato starch-olive oil edible films reinforced with zein nanoparticles. International Journal of Biological Macromolecules, v. 149, p. 941-950, 2020. https://doi.org/10.1016/j.ijbiomac.2020.01.175

GHANBARI, A.; TABARSA, T.; ASHORI, A.; SHAKERI, A.; MASHKOUR, M. Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: extrusion processing. International Journal of Biological Macromolecules, v. 112, p. 442-447, 2018. https://doi.org/10.1016/j.ijbiomac.2018.02.007

GÓMEZ, H. C.; SERPA, A.; VELÁSQUEZ-COCK, J.; GAÑÁN, P.; CASTRO, C.; VÉLEZ, L.; ZULUAGA, R. Vegetable nanocellulose in food science: a review. Food Hydrocolloids, v. 57, p. 178-186, 2016. https://doi.org/10.1016/j.foodhyd.2016.01.023

GRAY, N.; HAMZEH, Y.; KABOORANI, A.; ABDULKHANI, A. Influence of cellulose nanocrystal on strength and properties of low density polyethylene and thermoplastic starch composites. Industrial Crops and Products, v. 115, p. 298-305, 2018. https://doi.org/10.1016/j.indcrop.2018.02.017

HABIBI, Y.; LUCIA, L. A.; ROJAS, O. J. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews, v. 110, n. 6, p. 3479-3500, 2010. https://doi.org/10.1021/cr900339w

HESSLER, L. E.; MEROLA, G. V. Determination of cellulose in cotton and cordage fiber. Analytical Chemistry, v. 21, n. 6, p. 695-698, 1949. https://doi.org/10.1021/ac60030a014

IKEM, A.; ODUMOSU, P. O.; UDOUSORO, I. Elemental composition of cereal grains and the contribution to the dietary intake in the Nigerian population. Journal of Food Composition and Analysis, v. 118, e105207, 2023. https://doi.org/10.1016/j.jfca.2023.105207

JIMÉNEZ, A.; HERNÁNDEZ, K. L.; COLLAHUAZO-REINOSO, Y.; AVILÉS, R.; PINO, J. A.; GARCÍA, M. A. Película comestible a partir de cáscara de plátano macho (Musa paradisiaca L.). Ciencia y Tecnología de Alimentos, v. 29, n. 3, p. 49-57, 2019.

JOSHI, M.; ADAK, B.; BUTOLA, B. S. Polyurethane nanocomposite based gas barrier films, membranes and coatings: a review on synthesis, characterization and potential applications. Progress in Materials Science, v. 97, p. 230-282, 2018. https://doi.org/10.1016/j.pmatsci.2018.05.001

LOMELÍ-RAMÍREZ, M. G.; VALDEZ-FAUSTO, E. M.; RENTERÍA-URQUIZA, M.; JIMÉNEZ-AMEZCUA, R. M.; ANZALDO, J.; TORRES-RENDON, J. G.; GARCÍA, S. Study of green nanocomposites based on corn starch and cellulose nanofibrils from Agave tequilana Weber. Carbohydrate Polymers, v. 201, p. 9-19, 2018. https://doi.org/10.1016/j.carbpol.2018.08.045

MAHARDIKA, M.; ABRAL, H.; KASIM, A.; ARIEF, S.; HAFIZULHAQ, F.; ASROFI, M. Properties of cellulose nanofiber/bengkoang starch bionanocomposites: effect of fiber loading. LWT, v. 116, e108554, 2019. https://doi.org/10.1016/j.lwt.2019.108554

MEESORN, W.; SHIROLE, A.; VANHECKE, D.; DE ESPINOSA, L. M.; WEDER, C. A simple and versatile strategy to improve the mechanical properties of polymer nanocomposites with cellulose nanocrystals. Macromolecules, v. 50, n. 6, p. 2364-2374, 2017. https://doi.org/10.1021/acs.macromol.6b02629

MÜLLER, C. M. O.; LAURINDO, J. B.; YAMASHITA, F. Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films. Industrial Crops and Products, v. 33, n. 3, p. 605-610, 2011. https://doi.org/10.1016/j.indcrop.2010.12.021

NOBBMANN, U.; MORFESIS, A. Light scattering and nanoparticles. Materials Today, v. 12, n. 5, p. 52-54, 2009. https://doi.org/10.1016/S1369-7021(09)70164-6

PELISSARI, F. M.; ANDRADE-MAHECHA, M. M.; SOBRAL, P. J. A.; MENEGALLI, F. C. Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels. Journal of Colloid and Interface Science, v. 505, p. 154-167, 2017. https://doi.org/10.1016/j.jcis.2017.05.106

PULIDO, E.; MORALES, B.; ZAMUDIO, M.; LUGO, F. Obtención y caracterización de nanocelulosa a partir de tule (Typha domingensis). Revista de Energía Química y Física, v. 3, n. 6, p. 31-38, 2016.

RHIM, J. W.; NG, P. K. W. Natural biopolymer-based nanocomposite films for packaging applications. Critical Reviews in Food Science and Nutrition, v. 47, n. 4, p. 411-433, 2007. https://doi.org/10.1080/10408390600846366

SAVADEKAR, N. R.; MHASKE, S. T. Synthesis of nanocellulose fibers and effect on thermoplastics starch based films. Carbohydrate Polymers, v. 89, n. 1, p. 146-151, 2012. https://doi.org/10.1016/j.carbpol.2012.02.063

SCHAEFER, E. W.; PAVONI, J. M.; LUCHESE, C. L.; LUVIZETTO, D. J.; TESSARO, I. C. Influence of turmeric incorporation on physicochemical, antimicrobial and mechanical properties of the cornstarch and chitosan films. International Journal of Biological Macromolecules, v. 148, p. 342-50, 2020. https://doi.org/10.1016/j.ijbiomac.2020.01.148

SCHMIDT, G.; MALWITZ, M. M. Properties of polymer-nanoparticle composites. Current Opinion in Colloid & Interface Science, v. 8, p. 103-108, 2003. https://doi.org/10.1016/S1359-0294(03)00008-6

SHARMA, C.; DHIMAN, R.; ROKANA, N.; PANWAR, H. Nanotechnology: An untapped resource for food packaging. Frontiers in Microbiology, v. 8, e1735, 2017. https://doi.org/10.3389/fmicb.2017.01735

SLAVUTSKY, A. M.; BERTUZZI, M. A. Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse. Carbohydrate Polymers, v. 110, p. 53-61, 2014. https://doi.org/10.1016/j.carbpol.2014.03.049

SOLTES DE ALMEIDA, V.; RUIVO, B.; ITO, V. C.; MALUCELLI, L.; DA SILVA, M. A.; DEMIATE, I. M.; PINHEIRO, L. A.; LACERDA, L. G. Thermal, Morphological, and Mechanical Properties of Regular and Waxy Maize Starch Films Reinforced with Cellulose Nanofibers (CNF). Materials Research, v. 23, n. 2, e20190576, 2020. https://doi.org/10.1590/1980-5373-MR-2019-0576

SOUSA, L.; LOPES, J. F.; DUTRA, J. W. A.; PEREIRA, A. I. S. Películas de mandioca reforzada con nanocelulosa y adición de aceite de burití (Mauritia flexuosa L.). Revista ION, v. 36, n. 3, p. 53-62, 2023. https://doi.org/10.18273/revion.v36n3-2023005

SYAFRI, E.; SUDIRMAN, M.; YULIANTI, E.; DESWITA; ASROFI, M.; ABRAL, H.; SAPUAN, S. M.; ILYAS, R. A.; FUDHOLI, A. Effect of sonication time on the thermal stability, moisture absorption, and biodegradation of water hyacinth (Eichhornia crassipes) nanocellulose-filled bengkuang (Pachyrhizus erosus) starch biocomposites. Journal of Materials Research and Technology, v. 8, n. 6, p. 6223-6231, 2019. https://doi.org/10.1016/j.jmrt.2019.10.016

TEODORO, A. P.; MALI, S.; ROMERO, N.; DE CARVALHO, G. M. Cassava starch films containing acetylated starch nanoparticles as reinforcement: physical and mechanical characterization. Carbohydrate Polymers, v. 126, p. 9-16, 2015. https://doi.org/10.1016/j.carbpol.2015.03.021

TETLOW, I. J.; MORELL, M. K.; EMES, M. J. Recent developments in understanding the regulation of starch metabolism in higher plants. Journal of Experimental Botany, v. 55, n. 406, 2131-2145, 2004. https://doi.org/10.1093/jxb/erh248

TIMHADJELT, L.; SERIER, A.; BELGACEM, M. N.; BRAS, J. Elaboration of cellulose based nanobiocomposite: Effect of cellulose nanocrystals surface treatment and interface «melting». Industrial Crops and Products, v. 72, p. 7-15, 2015. https://doi.org/10.1016/j.indcrop.2015.02.040

TRIVIÑO, A. B.; VILLENA, N. P. La industria del maíz y su incidencia en la matriz productiva del Ecuador en el período 2013-2017. Revista Espacios, v. 40, n. 14, p. 1-14, 2019.

WANG, Z.; YAO, Z.; ZHOU, J.; HE, M.; JIANG, Q.; LI, A.; LI, S.; LIU, M.; LUO, S.; ZHANG, D. Improvement of polylactic acid film properties through the addition of cellulose nanocrystals isolated from waste cotton cloth. International Journal of Biological Macromolecules, v. 129, p. 878-886, 2019. https://doi.org/10.1016/j.ijbiomac.2019.02.021

YU, J. K.; MOON, Y. S. Corn starch: quality and quantity improvement for industrial uses. Plants, v. 11, n. 1, e92, 2022. https://doi.org/10.3390/plants11010092

YU, Z.; ALSAMMARRAIE, F. K.; NAYIGIZIKI, F. X.; WANG, W.; VARDHANABHUTI, B.; MUSTAPHA, A.; LIN, M. Effect and mechanism of cellulose nanofibrils on the active functions of biopolymer-based nanocomposite films. Food Research International, v. 99, p. 166-172, 2017. https://doi.org/10.1016/j.foodres.2017.05.009

ZARA, J.; YEGRES, F.; VARGAS, N.; MORALES, S.; CUBILLAN, L. Empleo de la Espectroscopia Infrarroja (FT-IR-ATR) como herramienta para la caracterización del bagazo de caña proveniente de la Sierra Falconiana. Química Viva, v. 16, p. 17-24, 2017.

ZINGE, C.; KANDASUBRAMANIAN, B. Nanocellulose based biodegradable polymers. European Polymer Journal, v. 133, e109758, 2020. https://doi.org/10.1016/j.eurpolymj.2020.109758

Downloads

Publicado

2024-11-12

Como Citar

Jiménez-Sánchez , A. ., Hernández-Gil, L., García, M. A., & Rodríguez-Larraburu , E. . (2024). DEVELOPMENT OF CORN STARCH BIODEGRADABLE FILMS REINFORCED BY NANOCELLULOSE FOR FOOD PACKAGING. Nativa, 12(4), 612–620. https://doi.org/10.31413/nat.v12i4.17718

Edição

Seção

Bioprospecção e Biotecnologia / Bioprospecting and Biotechnology

Artigos mais lidos pelo mesmo(s) autor(es)