PRODUCTION OF BACTERIAL CELLULOSE FROM KOMBUCHA TEA AND COFFEE HUSK INFUSION
DOI:
https://doi.org/10.31413/nat.v12i3.17720Palavras-chave:
Acetobacter xylinum, biomaterials, bacterial cellulose, coffee husk, KombuchaResumo
This paper determined the best formulation of culture medium based on Kombucha tea and infusion of coffee husk for producing bacterial cellulose (BC) from Acetobacter xylinum. The highest BC production corresponded to the medium containing tea, coffee husk infusion, sugar and 0.005% methionine. This greater production occurred when the inoculum was kept in the dark, which allowed high multiplication of the microorganisms and, therefore, greater polymer production. Introducing a new, feasible, malleable material from an environmentally friendly process will allow the replacement of materials with a greater impact on pollution and cost.
Keywords: Acetobacter xylinum; biomaterials; bacterial cellulose; coffee husk; Kombucha.
Produção de celulose bacteriana a partir de infusão de chá de kombuchá e casca de café
RESUMO: Neste artigo foi determinada a melhor formulação de meio de cultura à base de chá de Kombuchá e infusão de casca de café para produção de celulose bacteriana (BC) de Acetobacter xylinum. A maior produção de CB correspondeu ao meio contendo chá, infusão de casca de café, açúcar e 0,005% de metionina. Essa maior produção ocorreu quando o inóculo foi mantido no escuro, o que permitiu alta multiplicação dos microrganismos e, portanto, maior produção do polímero. A introdução de um novo material viável, maleável e proveniente de um processo amigo do ambiente permitirá a substituição de materiais com maior impacto na poluição e no custo.
Palavras-chave: Acetobacter xylinum; biomateriais; celulose bacteriana; casca de café; Kombuchá.
Referências
ABDELRAOF, M.; HASANIN, M. S.; EL-SAIED, H. Ecofriendly green conversion of potato peel wastes to high productivity bacterial cellulose. Carbohydrate Polymers, v. 211, p. 75-83, 2019. https://doi.org/10.1016/j.carbpol.2019.01.095
AN, S. J.; LEE, S. H.; HUH, J. B.; JEONG, S. I.; PARK, J. S.; GWON, H. J.; KANG, E. S.; JEONG, C. M.; LIM, Y. M. Preparation and characterization of resorbable bacterial cellulose membranes treated by electron beam irradiation for guided bone regeneration. International Journal of Molecular Sciences, v. 18, n. 11, e2236, 2017. https://doi.org/10.3390/ijms18112236
ANTIER, P.; MINJARES, A.; ROUSSOS, S.; RAIMBAULT, M.; VINIEGRA-GONZALEZ, G. Pectinase-hyperproducing mutants of Aspergillus niger C28B25 for solid-state fermentation of coffee pulp. Enzyme and Microbial Technology, v. 15, n. 3, p. 254-260, 1993. https://doi.org/10.1016/0141-0229(93)90146-s
AVANTHI, A.; KUMAR, G. L.; BANERJEE, R. Partially consolidated bioprocessing of mixed lignocellulosic feedstocks for ethanol production. Bioresource Technology, v. 245, p. 530-539, 2017. https://doi.org/10.1016/j.biortech.2017.08.140
AWOYERA, P. O.; ADESINA, A. Plastic wastes to construction products: Status, limitations and future perspective. Case Studies in Construction Materials, v. 12, e00330, 2020. https://doi.org/10.1016/j.cscm.2020.e00330
BAE, S. O.; SHODA, M. Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor. Applied Microbiology and Biotechnology, v. 67, n. 1, p. 45-51, 2005. https://doi.org/10.1007/s00253-004-1723-2
BAE, S.; SHODA, M. Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnology Progress, v. 20, n. 5, p. 1366-1371, 2004. https://doi.org/10.1021/bp0498490
BAE, S.; SHODA, M. Statistical optimization of culture conditions for bacterial cellulose production using Box-Behnken design. Biotechnology and Bioengineering, v. 90, n. 1, p. 20-28, 2005. https://doi.org/10.1002/bit.20325
BAGEWADI, Z. K.; BHAVIKATTI, J. S.; MUDDAPUR, U. M.; YARAGUPPI, D. A.; MULLA, S. I. Statistical optimization and characterization of bacterial cellulose produced by isolated thermophilic Bacillus licheniformis strain ZBT2. Carbohydrate Research, v. 491, e107979, 2020. https://doi.org/10.1016/j.carres.2020.107979
BRENNER, D. J.; KRIEG, N. R.; STALEY, J. T.; GARRITY, G. M. (Eds.). Bergey’s Manual of Systematic Bacteriology. 2nd Edition, v. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria), Springer, New York, 2005.
BULDUM, G.; BISMARCK, A.; MANTALARIS, A. Recombinant biosynthesis of bacterial cellulose in genetically modified Escherichia coli. Bioprocess and Biosystems Engineering, v. 41, n. 2, p. 265-279, 2018. https://doi.org/10.1007/s00449-017-1864-1
CARREÑO, L.; CAICEDO, L.; ALFONSO, L.; MARTÍNEZ, C. Técnicas de fermentación y aplicaciones de la celulosa bacteriana: una revisión. Ingeniería y Ciencia, v. 8, n. 16, p. 307-335, 2012. http://www.redalyc.org/articulo.oa?id=83524625012
DAYAL, M. S.; GOSWAMI, N.; SAHAI, A.; JAIN, V.; MATHUR, G.; MATHUR, A. Effect of media components on cell growth and bacterial cellulose production from Acetobacter aceti MTCC 2623. Carbohydrate Polymers, v. 94, n. 1, p. 12-6, 2013. https://doi.org/10.1016/j.carbpol.2013.01.018
DE OLYVEIRA, G. M.; BASMAJI, P.; COSTA, L. M. M.; DOS SANTOS, M. L.; DOS SANTOS, C.; GUASTALDI, F. P. S.; SCAREL-CAMINAGA, R. M.; DE OLIVEIRA, T. S.; PIZONI, E.; GUASTALDI, A. C. Surface physical chemistry properties in coated bacterial cellulose membranes with calcium phosphate. Materials Science and Engineering: C, v. 75, p. 1359-1365, 2017. https://doi.org/10.1016/j.msec.2017.03.025
DU, R.; ZHAO, F.; PENG, Q.; ZHOU, Z.; HAN, Y. Production and characterization of bacterial cellulose produced by Gluconacetobacter xylinus isolated from Chinese persimmon vinegar. Carbohydrate Polymers, v. 194, p. 200-207, 2018. https://doi.org/10.1016/j.carbpol.2018.04.041
FATIMA, A.; ORTIZ-ALBO, P.; NEVES, L. A.; NASCIMENTO, F. X.; CRESPO, J. G. Biosynthesis and characterization of bacterial cellulose membranes presenting relevant characteristics for air/gas filtration. Journal of Membrane Science, v. 674, e121509, 2023. https://doi.org/10.1016/j.memsci.2023.121509
GOH, W. N.; ROSMA, A.; KAUR, B.; FAZILAH, A.; KARIM, A. A.; BHAT, R. Fermentation of black tea broth (Kombucha): I. effects of sucrose concentration and fermentation time on the yield of microbial cellulose. International Food Research Journal, v. 19, n. 1, p. 109-117, 2012. http://www.ifrj.upm.edu.my/19%20(01)%202011/(15)IFRJ-2011-105%20Rajeev.pdf
GORGIEVA, S.; JANČIČ, U.; CEPEC, E.; TRČEK, J. Production efficiency and properties of bacterial cellulose membranes in a novel grape pomace hydrolysate by Komagataeibacter melomenusus AV436T and Komagataeibacter xylinus LMG 1518. International Journal of Biological Macromolecules, v. 244, e125368, 2023. https://doi.org/10.1016/j.ijbiomac.2023.125368
HASANIN, M. S.; ABDELRAOF, M.; HASHEM, A. H.; SAIED, H. E. Sustainable bacterial cellulose production by Achromobacter using mango peel waste. Microbial Cell Factories, v. 22, e24, 2023. https://doi.org/10.1186/s12934-023-02031-3
HU, G.; PENG, X.; WANG, X.; LI, X.; LI, X.; QIU, M. Excavation of coffee maturity markers and further research on their changes in coffee cherries of different maturity. Food Research International, v. 132, 109121, 2020. https://doi.org/10.1016/j.foodres.2020.109121
HUSSAIN, Z.; SAJJAD, W.; KHAN, T.; WAHID, F. Production of bacterial cellulose from industrial wastes: a review. Cellulose, v. 26, p. 2895-2911, 2019. https://doi.org/10.1007/s10570-019-02307-1
JANG, W. D.; HWANG, J. H.; KIM, H. U.; RYU, J. Y.; LEE, S. Y. Bacterial cellulose as an example product for sustainable production and consumption. Microbial Biotechnology, v. 10, n. 5, p. 1181-1185, 2017. https://doi.org/10.1111/1751-7915.12744
JARAMILLO, R.; TOBIO, W.; ESCAMILLA, J. Efecto de la sacarosa en la producción de celulosa por Gluconacetobacter xylinus en cultivo estático. Revista MVZ Córdoba, v. 17, n. 2, p. 3004-3013, 2012. http://www.redalyc.org/articulo.oa?id=69323751008
JONAS, R.; FARAH, L. F. Production and application of microbial cellulose. Polymer Degradation and Stability, v. 59, n. 1-3, p. 101-106, 1998. https://doi.org/10.1016/S0141-3910(97)00197-3
JOSEPH, G.; ROWE, G. E.; MARGARITIS, A.; WAN, W. Effects of polyacrylamide-co-acrylic acid on cellulose production by Acetobacter xylinum. Journal of Chemical Technology and Biotechnology, v. 78, n. 9, p. 964-970, 2003. https://doi.org/10.1002/jctb.869
KACZMAREK, M.; JĘDRZEJCZAK-KRZEPKOWSKA, M.; LUDWICKA, K. Comparative Analysis of Bacterial Cellulose Membranes Synthesized by Chosen Komagataeibacter Strains and Their Application Potential. International Journal of Molecular Sciences, v. 23, n. 6, e3391, 2022. https://doi.org/10.3390/ijms23063391
KESHK, S. Physical properties of bacterial cellulose sheets produced in presence of lignosulfonate. Enzyme and Microbial Technology, v. 40, p. 9-12, 2006. https://doi.org/10.1016/j.enzmictec.2006.07.038
KRYSTYNOWICZ, A.; CZAJA, W.; WIKTOROWSKA-JEZIERSKA, A.; GONÇALVES-MIŚKIEWICZ, M.; TURKIEWICZ, M.; BIELECKI, S. Factors affecting the yield and properties of bacterial cellulose. Journal of Industrial Microbiology and Biotechnology, v. 29, n. 4, p. 189-195, 2002. https://doi.org/10.1038/sj.jim.7000303
KSIĄŻEK, E. Citric Acid: Properties, Microbial Production, and Applications in Industries. Molecules, v. 29, e22, 2024. https://doi.org/10.3390/molecules29010022
KUO, C.H.; CHEN, J. H.; LIOU, B. K.; LEE, C. K. Utilization of acetate buffer to improve bacterial cellulose production by Gluconacetobacter xylinus. Food Hydrocolloids, v. 53, p. 98-103, 2016. https://doi.org/10.1016/j.foodhyd.2014.12.034
KUROSUMI, A.; SASAKI, C.; YAMASHITA, Y.; NAKAMURA, Y. Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydrate Polymers, v. 76, n. 2, p. 333-335, 2009. https://doi.org/10.1016/j.carbpol.2008.11.009
LEE, S. Y.; KIM, H. U. Systems strategies for developing industrial microbial strains. Nature Biotechnology, v. 33, n. 10, p. 1061-1072, 2015. https://doi.org/10.1038/nbt.3365
LEIFA, F.; PANDEY, A.; SOCCOL, C. R. Solid state cultivation - An efficient method to use toxic agro-industrial residues. Journal of Basic Microbiology, v. 40, n. 3, p. 187-197, 2000. https://doi.org/10.1002/1521-4028(200007)40:3<187::AID-JOBM187>3.0.CO;2-Q
MATSUOKA, M.; TSUCHIDA, T.; MATSUSHITA, K.; ADACHI, O.; YOSHINAGA, F. A Synthetic Medium for Bacterial Cellulose Production by Acetobacter xylinum subsp. sucrofermentans. Bioscience, Biotechnology and Biochemistry, v. 60, n. 4, p. 575-579, 1996. https://doi.org/10.1271/bbb.60.575
NGUYEN, V. T.; FLANAGAN, B.; GIDLEY, M. J.; DYKES, G. A. Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha. Current Microbiology, v. 57, n. 5, p. 449-453, 2008. https://doi.org/10.1007/s00284-008-9228-3
NORO, N.; SUGANO, Y.; SHODA, M. Utilization of the buffering capacity of corn steep liquor in bacterial cellulose production by Acetobacter xylinum. Applied Microbiology and Biotechnology, v. 64, p. 199-205, 2004. https://doi.org/10.1007/s00253-003-1457-6
RAMANA, K. V.; TOMAR, A.; SINGH, L. Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum. World Journal of Microbiology and Biotechnology, v. 16, n. 3, p. 245-248, 2000. https://doi.org/10.1023/A:1008958014270
RANI, M. U.; APPAIAH, K. A. A. Production of bacterial cellulose by Gluconacetobacter hansenii UAC09 using coffee cherry husk. Journal of Food Science and Technology, v. 50, n. 4, p. 755-762, 2013. https://doi.org/10.1007/s13197-011-0401-5
ROSS, P.; MAYER, R.; BENZIMAN, A. N. D. M. Cellulose Biosynthesis and Function in Bacteria. Microbiological Reviews, v. 55, n. 1, p. 35-58, 1991. https://doi.org/10.1128/mr.55.1.35-58.1991
SANTOS, S. M.; CARBAJO, J. M.; QUINTANA, E.; IBARRA, D.; GÓMEZ, N.; LADERO, M.; EUGENIO, M. E.; VILLAR, J. C. Characterization of purified bacterial cellulose focused on its use on paper restoration. Carbohydrate Polymers, v. 116, p. 173-81, 2015. https://doi.org/10.1016/j.carbpol.2014.03.064
SCOTT, W. S.; CANNON, R. E. Alternative environmental roles for cellulose produced by Acetobacter xylinum. Applied and Environmental Microbiology, v. 55, n. 10, p. 2448-2452, 1989. https://doi.org/10.1128%2Faem.55.10.2448-2452.1989
SHAO, W.; LIU, H.; WANG, S.; WU, J.; HUANG, M.; MIN, H.; LIU, X. Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes. Carbohydrate Polymers, v. 145, p. 114-120, 2016. https://doi.org/10.1016/j.carbpol.2016.02.065
SINGH, P.; SHARMA, V. P. Integrated plastic waste management: environmental and improved health approaches. Procedia Environmental Sciences, v. 35, p. 692-700, 2016. https://doi.org/10.1016/j.proenv.2016.07.068
SKORUPA, A.; WORWĄG, M.; KOWALCZYK, M. Coffee Industry and Ways of Using By-Products as Bioadsorbents for Removal of Pollutants. Water, v. 15, e112, 2023. https://doi.org/10.3390/w15010112
TONOUCHI, N.; TSUCHIDA, T.; YOSHINAGA, F.; BEPPU, T.; HORINOUCHI, S. Characterization of the biosynthetic pathway of cellulose from glucose and fructose in Acetobacter xylinum. Bioscience, Biotechnology and Biochemistry, v. 60, n. 8, p. 1377-1379, 1996. https://doi.org/10.1271/bbb.60.1377
ULLOA, J. B.; VERRETH, J. A. J.; AMATO, S.; HUISMAN, E. A. Biological treatments affect the chemical composition of coffee pulp. Bioresource Technology, v. 89, n. 3, p. 267-274, 2003. https://doi.org/10.1016/s0960-8524(03)00070-1
VANDAMME, E. J.; DE BAETS, S.; VANBAELEN, A.; JORIS, K.; DE WULF, P. Improved production of bacterial cellulose and its application potential. Polymer Degradation and Stability, v. 59, n. 1-3, p. 93-99, 1998. https://doi.org/10.1016/S0141-3910(97)00185-7
VIANA, R. M.; SÁ, N. M. S. M.; BARROS, M. O.; BORGES, M. F.; AZEREDO, H. M. C. Nanofibrillated bacterial cellulose and pectin edible films added with fruit purees. Carbohydrate Polymers, v. 196, p. 27-32, 2018. https://doi.org/10.1016/j.carbpol.2018.05.017
WANG, Y.; JIA, J.; TIAN, Y.; SHU, X.; REN, X. -J.; GUAN, Y.; YAN, Z. -Y. Antifungal effects of clove oil microcapsule on meat products. LWT - Food Science and Technology, v. 89, p. 604-609, 2018. https://doi.org/10.1016/j.lwt.2017.11.042
WANG, Z.; DADI, L.; QIU, Y.; DAI, Y.; ZHU, S. SARSAIYA, S.; CHEN, J. Preparation and characterization of coffee hull fiber for reinforcing application in thermoplastic composites. Bioengineered, v. 10, n. 1, p. 397-408, 2019. https://doi.org/10.1080/21655979.2019.1661694
ZAHAN, K. A.; PA’E, N.; MUHAMAD, I. I. Monitoring the Effect of pH on Bacterial Cellulose Production and Acetobacter xylinum 0416 Growth in a Rotary Discs Reactor. Arabian Journal for Science and Engineering, v. 40, p. 1881-1885, 2015. https://doi.org/10.1007/s13369-015-1712-z
Downloads
Publicado
Edição
Seção
Como Citar
Licença
Copyright (c) 2024 Nativa

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Direitos Autorais para artigos publicados nesta revista são do autor, com direitos de primeira publicação para a revista. Em virtude de a aparecerem nesta revista de acesso público, os artigos são de uso gratuito, com atribuições próprias, em aplicações educacionais e não-comerciais.
A artigos publicados nessa revista, podem ser reproduzidos parcialmente ou utilizados como referência por outros autores, desde que seja cita a fonte, ou seja, a Revista Nativa.
Copyright for articles published in this journal are the authors, with first publication rights granted to the journal. The journal shows open access, and articles are free to use, with proper attribution, in educational and non-commercial.
The articles published in this journal may be reproduced in part or used as a reference by other authors, provided that the source is quoted.


