ABIOTIC FACTORS AND LULC CHANGES AFFECTING THE DIVERSITY OF WILD SPECIES OF SOLANACEAE IN THE ECUADORIAN ANDES

Authors

  • Mario García-Mora mariogmvictor@gmail.com
    Facultad de Recursos Naturales, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador. / Posgrado, Universidad Politécnica Estatal del Carchi, Carchi, Ecuador. https://orcid.org/0000-0001-7137-8623
  • Mercy Ilbay-Yupa mercy.ilbay@utc.edu.ec
    Grupo de Recursos Hidricos, Universidad Técnica de Cotopaxi, Salache, Latacunga, 17055, Ecuador https://orcid.org/0000-0001-9503-2686

DOI:

10.31413/nat.v12i2.17705

Keywords:

diversidade, espécies silvestres de Solanaceae, LULC, Equador

Abstract

ABSTRACT: The diversity of wild species of Solanaceae is very important for maintaining ecosystem resilience and food security. This study identified the abiotic conditions that contribute to the presence of wild species of Solanaceae and the main changes in Land Use and Land Cover (LULC) that affect their conservation in the Ecuadorian Andes. A Multiple correspondence analysis (MCA), Hierarchical Cluster Analysis and LULC change analysis were performed to elucidate the proposed objectives. The results show the influence that factors such as geographic latitude and precipitation have on wild species of Solanaceae have been observed through the MCA; to a lesser extent, but just as important, so were frosts and droughts. Three groups have also been identified in this study: Group 1 (S. olmosense) located in the southwest of the country, higher temperatures (16-22 °C), average rainfall (1207 mm/year), no influence of frost and medium tolerance to droughts; Group 2 (S. chilliasense and S. albornozii) also to the south, with a high presence of frost and drought, but with lower temperatures (10-14 °C) and precipitation (1115 mm/year) and loam soils; finally, Group 3 (S. albicans, S. andreanum, S. chomatophilum, S. colombianum and S. minutifoliolum) is the most abundant, with a distribution in the center and north of the country, under a wide range of temperature (2 to 22 °C), precipitation (500-2000 mm/year) and tolerant to frost and drought.  The change of LULC evidences a significant decrease (p<0.001) of 5.1 km2/year from Grasslands and Forests and semi-natural to cultivated areas, artificial territory, bare soils and pastures for the three groups. Ecuador's climate variability allows diversity in the distribution of wild species of Solanaceae, which are affected by the change of LULC, so it is necessary to take concrete actions to facilitate the conservation of the potato genetic resource.

Keywords:  diversity; wild species of Solanacea; land use; land cover.

 

Fatores abióticos e alterações no LULC afetando a diversidade de espécies silvestres de Solanaceae nos Andes equatorianos

 

RESUMO: A diversidade de espécies silvestres de Solanaceae é muito importante para a manutenção da resiliência dos ecossistemas e da segurança alimentar. Este estudo identificou as condições abióticas que contribuem para a presença de espécies silvestres de Solanaceae e as principais mudanças no Uso e Cobertura da Terra (LULC) que afetam sua conservação nos Andes equatorianos. Uma Análise de Correspondência Múltipla (ACM), Análise de Agrupamento Hierárquico e Análise de Mudanças LULC foram realizadas para elucidar os objetivos propostos. Os resultados mostram a influência que fatores como latitude geográfica e precipitação têm sobre espécies silvestres de Solanaceae têm sido observados através da MCA; em menor grau, mas igualmente importante, assim como geadas e secas. Três grupos também foram identificados neste estudo; Grupo 1 (S. olmosense) localizado no sudoeste do país, temperaturas mais elevadas (16-22 °C), precipitação média (1207 mm/ano), ausência de influência de geadas e média tolerância a secas; Grupo 2 (S. chilliasense e S. albornozii) também ao sul, com alta presença de geadas e secas, mas com temperaturas mais baixas (10-14 °C) e precipitação (1115 mm/ano) e solos francos; finalmente, o Grupo 3 (S. albicans, S. andreanum, S. chomatophilum, S. colombianum e S. minutifoliolum) é o mais abundante, com distribuição no centro e norte do país, sob ampla faixa de temperatura (2 a 22 °C), precipitação (500-2000 mm/ano) e tolerante a geadas e secas. A mudança do LULC evidencia uma diminuição significativa (p<0,001) de 5,1 km2/ano de Campos e Florestas e áreas seminaturais para cultivadas, território artificial, solos nus e pastagens para os três grupos. A variabilidade climática do Equador permite diversidade na distribuição de espécies silvestres de Solanaceae, que são afetadas pela mudança do LULC, por isso é necessário tomar ações concretas para facilitar a conservação do recurso genético da batata.

Palavras-chave: diversidade; espécies silvestres de Solanaceae; mudanças no uso do solo;  mudanças na cobertura do solo.

References

AGIDEW, A. A.; SINGH, K. N. The implications of land use and land cover changes for rural household food insecurity in the Northeastern highlands of Ethiopia: the case of the Teleyayen sub-watershed. Agriculture & Food Security, v. 6, n. 1, e56, 2017. https://doi.org/10.1186/s40066-017-0134-4

AMES, M.; SPOONER, D. M. Phylogeny of Solanum series Piurana and related species in Solanum section Petota based on five conserved ortholog sequences. Taxon, v. 59, n. 4, p. 1091-1101, 2010. https://doi.org/10.1002/tax.594009

ASHA, K. I.; ASWANI, S. A.; RADHIKA, N. K.; KRISHNAN, B. S. P. Genetic variability and diversity analysis of Chinese potato (Solenostemon rotundifolius (Poir.) J. K. Morton) germplasm using morphological and molecular markers. South African Journal of Botany, v. 155, p. 171-177, 2023. https://doi.org/10.1016/j.sajb.2023.02.014

BASHIR, I.; NICOLAO, R.; HEIDEN, G. Chapter 12 - Wild Potatoes: A Genetic Reservoir for Potato Breeding. Em: AZHAR, M. T.; WANI, S. H. (Eds.). Wild Germplasm for Genetic Improvement in Crop Plants. Academic Press, 2021. p. 215-240.

BEH, E. J.; LOMBARDO, R. Multiple and multiway correspondence analysis. WIREs Computational Statistics, v. 11, n. 5, e1464, 2019. https://doi.org/10.1002/wics.1464

BRÜCK, S. A.; TORRES, B. D. M.; De MORAES POLIZELI, M. de L. T. The Ecuadorian paramo in danger: What we know and what might be learned from northern wetlands. Global Ecology and Conservation, v. 47, e02639, 2023.

CASTAÑEDA-ÁLVAREZ, N. P.; DE HAAN, S.; JUÁREZ, H.; ACHICANOY, H. A.; SOSA, C. C.; BERNAU, V.; SALAS, A.; HEIDER, B.; SIMON, R.; MAXTED, N.; SPOONER, D. M. Ex Situ conservation priorities for the wild relatives of potato (Solanum L. Section Petota). Plos One, v. 10, n. 4, p. e0122599, 2015. https://doi.org/10.1371/journal.pone.0122599

CASTILLO, C. C.; VÁSQUEZ, M. E.; VÁSQUEZ, W. C.; RUALES, J. E. R. Determinación de la resistencia genética de ocho especies silvestres de Solanum spp. a Bactericera cockerelli en invernadero, Quito, Ecuador. [s.l.] Quito. In: CONGRESO ECUATORIANO DE LA PAPA, IX, 2021. Proceedings… Quito, EC: INIAP-EESC, 2021. 3p.

CESAR, R. M.; COSTA, L. da F. Computer-vision-based extraction of neural dendrograms. Journal of Neuroscience Methods, v. 93, n. 2, p. 121-131, 1999. https://doi.org/10.1016/S0165-0270(99)00120-X

CHERUTO, M. C.; KAUTI, M. K.; KISANGAU, D. P.; KARIUKI, P. C. Assessment of land use and land cover change using GIS and remote sensing techniques: a case study of Makueni County, Kenya. Journal of Remote Sensing & GIS, v. 5, n. 4, e1000175, 2016. https://doi.org/10.4175/2469-4134.1000175

CIP. Datos y cifras de la papa. International Potato Center. Lima -Perú. https://cipotato.org/es/potato/potato-facts-and-figures/, 2016. Disponível em: <https://cipotato.org/es/potato/potato-facts-and-figures/>. Acesso em: 7 abr. 2023

DAHAL, K.; LI, X.-Q.; TAI, H.; CREELMAN, A.; BIZIMUNGU, B. Improving potato stress tolerance and tuber yield under a climate change scenario – a current overview. Frontiers in Plant Science, v. 10, n. 2, e563, 2019. https://doi.org/10.3389/fpls.2019.00563

DE HAAN, S.; RODRIGUEZ, F. Chapter 1 - Potato Origin and Production. Em: SINGH, J.; KAUR, L. (Eds.). Advances in Potato Chemistry and Technology (Second Edition). San Diego: Academic Press, 2016. p. 1-32.

DEL MAR MARTÍNEZ-PRADA, M.; CURTIN, S. J.; GUTIÉRREZ-GONZÁLEZ, J. J. Potato improvement through genetic engineering. GM Crops & Food, v. 12, n. 1, p. 479-496, 2021. https://doi/10.1080/21645698.2021.1993688

DUAN, Y.; LIU, J.; XU, J.; BIAN, C.; DUAN, S.; PANG, W.; HU, J.; LI, G.; JIN, L. DNA fingerprinting and genetic diversity analysis with simple sequence repeat markers of 217 potato cultivars (Solanum tuberosum L.) in China. American Journal of Potato Research, v. 96, n. 1, p. 21-32, 2019. https://doi.org/10.1007/s12230-018-9685-6

ESCUDERO, L.; DELGADO, J. A.; MONAR, C.; VALVERDE, F.; BARRERA, V.; ALWANG, J. A new nitrogen index for assessment of nitrogen management of Andean mountain cropping systems of Ecuador. Soil Science, v. 179, n. 3, p. 130-140, 2014. https://doi.org/10.1097/SS.0000000000000052

ESPINEL, P. Procedimiento para efectuar una clasificación ascendente jerárquica de un conjunto de puntos utilizando el Método de Ward. Infociencia, v. 9, n. 1, p. 121-131, 2015.

ESRI; FAO; NOAA. Sentinel-2 10m Land Use/Land Cover Time Series (Mature Support). Disponível em: <https://www.arcgis.com/apps/instant/media/index.html?appid=fc92d38533d440078f17678ebc20e8e2>. Acesso em: 2023.

FAO_Food and Agriculture Organization of the United Nations. El estado de la seguridad alimentaria y la nutrición en el mundo 2022. Adaptación de las políticas alimentarias y agrícolas para hacer las dietas saludables más asequibles. Roma: FAO/IFAD/WHO/WFP/UNICEF, 2022. 292p. https://doi.org/10.4060/cc0639es

FERNANDEZ-PALOMINO, C. A.; HATTERMANN, F. F.; KRYSANOVA, V.; VEGA-JÁCOME, F.; MENZ, C.; GLEIXNER, S.; BRONSTERT, A. High-resolution climate projection dataset based on CMIP6 for Peru and Ecuador: BASD-CMIP6-PE. Scientific Data, v. 11, n. 1, e34, 2024. https://doi.org/10.1038/s41597-023-02863-z

FRANZESE, M.; IULIANO, A. Descriptive Statistics. Em: RANGANATHAN, S.; GRIBSKOV, M.; NAKAI, K.; SCHÖNBACH, C. (Eds.). Encyclopedia of Bioinformatics and Computational Biology. Oxford: Academic Press, 2019. p. 672-684.

FUMIA, N.; PIRONON, S.; RUBINOFF, D.; KHOURY, C. K.; GORE, M. A.; KANTAR, M. B. Wild relatives of potato may bolster its adaptation to new niches under future climate scenarios. Food and Energy Security, v. 11, n. 2, e360, 2022. https://doi.org/10.1002/fes3.360

GENESYS, T. GENESYS global portal on plant genetic resources, Station, Estacion Experimental Santa Catalina. http://www.genesys-pgr.org. Disponível em: <https://www.genesys-pgr.org/wiews/ECU077>. Acesso em: 15 maio. 2024.

GONZÁLEZ-OROZCO, C. E.; REYES-HERRERA, P. H.; SOSA, C. C.; TORRES, R. T.; MANRIQUE-CARPINTERO, N. C.; LASSO-PAREDES, Z.; CERÓN-SOUZA, I.; YOCKTENG, R. Wild relatives of potato (Solanum L. sec. Petota) poorly sampled and unprotected in Colombia. Crop Science, v. 64, n. 1, p. 225-243, 2024. https://doi.org/10.1002/csc2.21143

GRADOS, D.; GARCÍA, S.; SCHREVENS, E. Assessing the potato yield gap in the Peruvian Central Andes. Agricultural Systems, v. 181, e102817, 2020. https://doi.org/10.1016/j.agsy.2020.102817

HARDIGAN, M. A.; BAMBERG, J.; BUELL, C. R.; DOUCHES, D. S. Taxonomy and genetic differentiation among wild and Cultivated Germplasm of Solanum sect. Petota. The Plant Genome, v. 8, n. 1, e25, 2015. https://doi.org/10.3835/plantgenome2014.06.0025

HASTENRATH, S.; LAMB, P. J. Climate dynamics of atmosphere and ocean in the equatorial zone: a synthesis. International Journal of Climatology, v. 24, n. 13, p. 1601-1612, 2004. https://doi.org/10.1002/joc.1086

HAVERKORT, A. J.; RUIJTER, F. J. de; VAN EVERT, F. K.; CONIJN, J. G.; RUTGERS, B. Worldwide sustainability hotspots in potato cultivation. 1. identification and mapping. Potato Research, v. 56, n. 4, p. 343-353, 2013. https://doi.org/10.1007/s11540-013-9247-8

IBAÑEZ, V. N.; KOZUB, P. C.; GONZÁLEZ, C. V.; JEREZ, D. N.; MASUELLI, R. W.; BERLI, F. J.; MARFIL, C. F. Response to water deficit of semi-desert wild potato Solanum kurtzianum genotypes collected from different altitudes. Plant Science, v. 308, e110911, 2021. https://doi.org/10.1016/j.plantsci.2021.110911

RONDÓN, J. M. R.; PEÑA, V. Análisis de dinámicas de cambio de las coberturas de la tierra en Colombia, Escala 1:100.000 Periodos 2000-2002 y 2005-2009. Bogotá: Publicación del Comité de Comunicaciones y Publicaciones del IDEAM, 2013. 148p. Available on: https://biblioteca.ugc.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=241461&shelfbrowse_itemnumber=436493

ILBAY-YUPA, M.; LAVADO-CASIMIRO, W.; RAU, P.; ZUBIETA, R.; CASTILLÓN, F. Updating regionalization of precipitation in Ecuador. Theoretical and Applied Climatology, v. 143, n. 3, p. 1513-1528, 2021a. https://doi.org/10.1007/s00704-020-03476-x

ILBAY-YUPA, M.; RUIZ, J.; CUEVA, E.; ORTIZ, V.; MORALES, D. Empirical model for estimating the ecological footprint in Ecuador based on demographic, economic and environmental indicators. Journal of Ecological Engineering, v. 22, n. 5, p. 59-67, 2021b. https://doi.org/10.1016/10.12911/22998993/135868

JAMES, G.; WITTEN, D.; HASTIE, T.; TIBSHIRANI, R. Unsupervised Learning. Em: JAMES, G.; WITTEN, D.; HASTIE, T.; TIBSHIRANI, R. (Eds.). An Introduction to Statistical Learning: with Applications in R. Springer Texts in Statistics. New York, NY: Springer US, 2021. p. 497-552.

JENDEREK, M. M.; AMBRUZS, B. D.; TANNER, J. D.; BAMBERG, J. B. High regrowth of potato crop wild relative genotypes after cryogenic storage. Cryobiology, v. 111, p. 84-88, 2023. https://doi.org/10.1016/j.cryobiol.2023.03.006

KARKI, H. S.; JANSKY, S. H.; HALTERMAN, D. A. Screening of wild potatoes identifies new sources of late blight resistance. Plant Disease, v. 105, n. 2, p. 368-376, 2021. https://doi.org/10.1094/PDIS-06-20-1367-RE

KHANGAR, N.; KAMALJA, K. K. Multiple correspondence analysis and its applications. Electronic Journal of Applied Statistical Analysis, v. 10, p. 432-462, 2017. https://doi.org/10.1285/i20705948v10n2p432

KHIUTTI, A.; SPOONER, D. M.; JANSKY, S. H.; HALTERMAN, D. A. Testing taxonomic predictivity of foliar and tuber resistance to phytophthora infestans in wild relatives of potato. Phytopathology, v. 105, n. 9, p. 1198-1205, 2015. https://doi.org/10.1094/PHYTO-02-15-0046-R

KIPTOO, S.; KIPTOO, E.; KIPTUM, C. Analysis of potato yield gap using aquacrop simulation Model. In: AFRICAN HIGHER EDUCATION WEEK AND RUFORUM BIENNIAL CONFERENCE, VI. 2018. Proceedings… Nairobi, Kenya: RUFORUM Working Document Series, v. 17, n. 2, p. 438-447. 2018.

KOLECH, S. A.; HALSETH, D.; PERRY, K.; WOLFE, D.; DOUCHES, D. S.; COOMBS, J.; DE JONG, W. Genetic diversity and relationship of Ethiopian potato varieties to germplasm from North America, Europe and the International Potato Center. American Journal of Potato Research, v. 93, n. 6, p. 609-619, 2016. https://doi.org/10.1007/s12230-016-9543-3

KOSZTRA, B.; BÜTTNER, G.; HAZEU, G.; ARNOLD, S. Updated CLC illustrated nomenclature guidelines - Environment Agency Austria (EAA). Wien Austri: Copernicus Land Monitoring Service, 2019. 126p.

LEGER, E. A.; BARGA, S.; AGNERAY, A. C.; BAUGHMAN, O.; BURTON, R.; WILLIAMS, M. Selecting native plants for restoration using rapid screening for adaptive traits: methods and outcomes in a Great Basin case study. Restoration Ecology, v. 29, n. 4, e13260, 2021. https://doi.org/10.1111/rec.13260

LI, M.; WANG, Y.; GUO, H.; DING, F.; YAN, H. Evaluation of variable rate irrigation management in forage crops: Saving water and increasing water productivity. Agricultural Water Management, v. 275, e108020, 2023. https://doi.org/10.1016/j.agwat.2022.108020

LIMA, L.; PAREDES, N.; TAPIA, B. C.; NARANJO, E.; ROSERO, L.; MONTEROS, A.; TACÁN, M.; PEÑA, G.; VILLARROEL, J. Ecuadorian catalogue of wild species related to sweetpotato, rice, lima bean, potato and eggplant. Mejía-Ecuador. INIAP-Global Crop Diversity Trust, 2018. 24p. (Miscellaneous publication, 455 - Informes técnicos y resúmenes de políticas)

LÓPEZ, S.; LÓPEZ-SANDOVAL, M. F.; GERIQUE, A.; SALAZAR, J. Landscape change in Southern Ecuador: An indicator-based and multi-temporal evaluation of land use and land cover in a mixed-use protected area. Ecological Indicators, v. 115, e106357, 2020. https://doi.org/10.1016/j.ecolind.2020.106357

MACIEL-MATA, C. A.; MORÁN, N. M.; AGUILAR, P. O.; ROJAS, G. S. El área de distribución de las especies: revisión del concepto. Acta universitaria, v. 25, n. 2, p. 03-19, 2015. https://doi.org/10.15174/au.2015.690

MARTÍN, R. M.; MOMPIE, E. J. Efecto de las temperaturas en el rendimiento de la papa (Solanum tuberosum L.) variedad romano. Cultivos Tropicales, v. 38, n. 1, p. 75-80, 2017.

MELIS, C.; SZAFRANSKA, P. A.; JEDRZEJEWSKA, B.; BARTÓN, K. Biogeographical variation in the population density of wild boar (Sus scrofa) in western Eurasia. Journal of Biogeography, v. 33, n. 5, p. 803-811, 2006. https://doi.org/10.1111/j.1365-2699.2006.01434.x

MELLOR, A.; BOUKIR, S.; HAYWOOD, A.; JONES, S. Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin. ISPRS Journal of Photogrammetry and Remote Sensing, v. 105, p. 155-168, 2015. https://doi.org/10.1016/j.isprsjprs.2015.03.014

MONAR, C.; SAAVEDRA, A. K.; ESCUDERO, L.; DELGADO, J. A.; ALWANG, J.; BARRERA, V.; BOTELLO, R. Positive impacts in soil and water conservation in an Andean region of South America: Case scenarios from a US Agency for International Development multidisciplinary cooperative project. Journal of Soil and Water Conservation, v. 68, n. 1, p. 25A-30A, 2013. https://doi.org/10.2489/jswc.68.1.25A

MORA, D. E.; WILLEMS, P. Decadal oscillations in rainfall and air temperature in the Paute River Basin—Southern Andes of Ecuador. Theoretical and Applied Climatology, v. 108, n. 1, p. 267-282, 2012. https://doi.org/10.1007/s00704-011-0527-4

MORÁN-TEJEDA, E.; BAZO, J.; LÓPEZ-MORENO, J. I.; AGUILAR, E.; AZORÍN-MOLINA, C.; SANCHEZ-LORENZO, A.; MARTÍNEZ, R.; NIETO, J.J.; MEJÍA, R.; MARTÍN-HERNÁNDEZ, N.; VICENTE-SERRANO, S. M. Climate trends and variability in Ecuador (1966–2011). International Journal of Climatology, v. 36, n. 11, p. 3839-3855, 2016. https://doi.org/10.1002/joc.4597

MORI, Y.; KURODA, M.; MAKINO, N. Multiple Correspondence Analysis. Em: MORI, Y.; KURODA, M.; MAKINO, N. (Eds.). Nonlinear principal component analysis and its applications. Singapore: Springer, 2016. p. 21–28.

MOSQUERA, V. H. B.; DELGADO, J. A.; ALWANG, J. R.; LÓPEZ, L. O. E.; AYALA, Y. E. C.; ANDRANDE, J. M. D.; D’ADAMO, R. Conservation Agriculture Increases Yields and Economic Returns of Potato, Forage, and Grain Systems of the Andes. Agronomy Journal, v. 111, n. 6, p. 2747-2753, 2019. https://doi.org/10.2134/agronj2019.04.0280

MUNYANEZA, J. E.; BIZIMUNGU, B. Management of potato pests and diseases in Africa. In: ALYOKHIN, A.; RONDON, S. I.; GAO, Y. (Eds.). Insect Pests of Potato (Second Edition). Academic Press, 2022. p. 407-426.

NAEEM, M.; MAQBOOL, A.; AKSOY, E. Potato taxonomy and wild relatives. Em: ÇALIŞKAN, M. E.; BAKHSH, A.; JABRAN, K. (Eds.). Potato Production Worldwide. Academic Press, 2023. p. 19-55.

NAGEL, M.; DULLOO, M. E.; BISSESSUR, P.; GAVRILENKO, T.; BAMBER, J.; ELLIS, D.; GIOVANNINI, P. Global Strategy for the Conservation of Potato. Bonn, Germany: Global Crop Diversity Trust, 2022. 160p. https://doi.org/10.5447/ipk/2022/29

NASIR, M. W.; TOTH, Z. Effect of drought stress on potato production: a review. Agronomy, v. 12, n. 3, e635, 2022. https://doi.org/10.3390/agronomy12030635

OSMAN, N.; DORAIRAJ, D.; HALIM, A.; ZELAN, N. I. A.; RASHID, M. A. A.; ZAKARIA, R. M. Dynamics of plant ecology and soil conservation: Implications for cut-slope protection. Acta Oecologica, v. 111, e103744, 2021. https://doi.org/10.1016/j.actao.2021.103744

PAN, Y.; WANG, Y.; HE, X.; ZHANG, S.; SONG, X.; ZHANG, N. Plant–soil feedback is dependent on tree mycorrhizal types and tree species richness in a subtropical forest. Geoderma, v. 442, e116780, 2024. https://doi.org/10.1016/j.geoderma.2024.116780

POMPON, J.; LI, X.-Q.; PELLETIER, Y. Resistance level to an aphid potato pest varies between genotypes from the same solanum accession. Journal of Economic Entomology, v. 104, n. 3, p. 1075-1079, 2011. https://doi.org/10.1603/ec10278

PRADEL, W.; GATTO, M.; HAREAU, G.; PANDEY, S. K.; BHARDWAY, V. Adoption of potato varieties and their role for climate change adaptation in India. Climate Risk Management, v. 23, p. 114-123, 2019. https://doi.org/10.1016/j.crm.2019.01.001

QIULAN, H.; XI, W.; YING, L.; WEI, Z.; JING, L.; MUNIR, S.; MEIRONG, H. Elucidating the molecular mechanisms of exogenous melatonin for improving heat tolerance in Solanum tuberosum L. seedlings. Scientia Horticulturae, v. 322, e112423, 2023. https://doi.org/10.1016/j.scienta.2023.112423

RAMACHANDRAN, K. M.; TSOKOS, C. P. Descriptive statistics. In: RAMACHANDRAN, K. M.; TSOKOS, C. P. (Eds.). Mathematical Statistics with Applications in R (Third Edition). Academic Press, 2021. p. 1-40.

SÄRKINEN, T.; BADEN, M.; GONZÁLES, P.; CUEVA, M.; GIACOMIN, L. L.; SPOONER, D. M.; SIMON, R.; JUÁREZ, H.; NINA, P.; MOLINA, J.; KNAPP, S. et al. Listado anotado de Solanum L. (Solanaceae) en el Perú. Revista Peruana de Biología, v. 22, n. 1, p. 03-62, 2015. https://doi.org/10.15381/rpb.v22i1.11121

SAVIN, R.; STONE, P. J.; NICOLAS, M. E.; WARDLAW, I. F. Grain growth and malting quality of barley. 1. Effects of heat stress and moderately high temperature. Australian Journal of Agricultural Research, v. 48, n. 5, p. 615-624, 1997. https://doi.org/10.1071/A96064

SHIMODA, S.; KANNO, H.; HIROTA, T. Time series analysis of temperature and rainfall-based weather aggregation reveals significant correlations between climate turning points and potato (Solanum tuberosum L) yield trends in Japan. Agricultural and Forest Meteorology, v. 263, p. 147–155, 2018. https://doi.org/10.1016/j.agrformet.2018.08.005

SINGH, A.; RAIGOND, P.; LAL, M. K.; SINGH, B.; THAKUR, N.; CHANGAN, S. S.; KUMAR, D.; DUTT, S. Effect of cooking methods on glycemic index and in vitro bioaccessibility of potato (Solanum tuberosum L.) carbohydrates. LWT, v. 127, e109363, 2020. https://doi.org/10.1016/j.lwt.2020.109363

SINGH, V. K.; SHUKLA, A. K.; SINGH, A. K. Chapter 7 - Impact of climate change on plant–microbe interactions under agroecosystems. In: CHOUDHARY, K. K.; KUMAR, A.; SINGH, A. K. (Eds.). Climate Change and Agricultural Ecosystems. Woodhead Publishing, 2019. p. 153-179.

SISAY, G.; GESSESSE, B.; FÜRST, C.; KASSIE, M.; KEBEDE, B. Modeling of land use/land cover dynamics using artificial neural network and cellular automata Markov chain algorithms in Goang watershed, Ethiopia. Heliyon, v. 9, n. 9, e20088, 2023. https://doi.org/10.1016/j.heliyon.2023.e20088

SOTOMAYOR, D. A.; ELLIS, D.; SALAS, A.; GOMES, R.; SANCHEZ, R. A.; CARRILLO, F.; GIRON, C.; QUISPE, V.; MARINQUE-CARPINTERO, N. C.; ANGLIN, N. L.; ZORRILLA, C.Collecting wild potato species (Solanum sect. Petota) in Peru to enhance genetic representation and fill gaps in ex situ collections. Frontiers in Plant Science, v. 14, e1044718, 2023. https://doi.org/10.3389/fpls.2023.1044718

SUNDAY, J. The pace of biodiversity change in a warming climate. Nature, v. 580, n. 7804, p. 460-461, 2020. https://doi.org/10.1038/d41586-020-00975-9

TATIS DIAZ, R.; OSORIO, D. P.; HERNÁNDEZ, E. M.; PALLARES, M. M.; CANALES, F. A.; PATERNINA, A. C.; ECHVERRÍA-GONZÁLES, A. Socioeconomic determinants that influence the agricultural practices of small farm families in northern Colombia. Journal of the Saudi Society of Agricultural Sciences, v. 21, n. 7, p. 440-451, 2022. https://doi.org/10.1016/j.jssas.2021.12.001

TOBAR, V.; WYSEURE, G. Seasonal rainfall patterns classification, relationship to ENSO and rainfall trends in Ecuador. International Journal of Climatology, v. 38, n. 4, p. 1808-1819, 2018. https://doi.org/10.1002/joc.5297

VICENTE-SERRANO, S. M.; AGUILAR, E.; MARTÍNEZ, R.; MARTÍN-HERNÁNDEZ, N.; AZORIN-MOLINA, C.; SANCHEZ-LORENZO, A.; EL KENAWY, A.; TOMÁS-BURGUERA, MORAN-TEJEDA, LÓPEZ-MORENO, REVUELTON, J.; BEGUERÍA, S.; NIETO, J. J.; DRUMOND A.; GIMENO, L.; NIETO, R. The complex influence of ENSO on droughts in Ecuador. Climate Dynamics, v. 48, n. 1, p. 405-427, 2017. https://doi.org/10.1007/s00382-016-3082-y

VON WETTBERG, E.; TOKER, C.; ÖZKAN, H.; SMÝKAL, P. Endangered Wild Crop Relatives of the Fertile Crescent. In: DELLASALA, D. A.; GOLDSTEIN, M. I. (Eds.). Imperiled: The Encyclopedia of Conservation. Oxford: Elsevier, 2022. p. 673-682. https://doi.org/10.1016/B978-0-12-821139-7.00109-4

WANG, J.; ZHAO, M.-W.; JIANG, L.; YANG. C.-C.; HUANG, X.-L.; XU, Y.; LU, J. A new strategy combined HASM and classical interpolation methods for DEM construction in areas without sufficient terrain data. Journal of Mountain Science, v. 18, n. 10, p. 2761-2775, 1 out. 2021. https://doi.org/10.1007/s11629-020-6655-5

WARREN LIAO, T. Clustering of time series data - a survey. Pattern Recognition, v. 38, n. 11, p. 1857-1874, 2005. https://doi.org/10.1016/j.patcog.2005.01.025

Downloads

Published

2024-06-06

How to Cite

García-Mora, M., & Ilbay-Yupa, M. (2024). ABIOTIC FACTORS AND LULC CHANGES AFFECTING THE DIVERSITY OF WILD SPECIES OF SOLANACEAE IN THE ECUADORIAN ANDES. Nativa, 12(2), 370–380. https://doi.org/10.31413/nat.v12i2.17705

Issue

Section

Ciências Ambientais / Environmental Sciences