Performance of genomic estimation methods in the identification of rice resistance to brusone

Authors

  • Zeferino Gomes da Silva Neto zeferino.neto@ufv.br
    Programa de Pós-Graduação em Estatística Aplicada e Biometria, Universidade Federal de Viçosa, Viçosa, MG, Brasil. https://orcid.org/0000-0002-8982-7375
  • Sebastião Martins Filho martinsfilho@ufv.br
    Programa de Pós-Graduação em Estatística Aplicada e Biometria, Universidade Federal de Viçosa, Viçosa, MG, Brasil. https://orcid.org/0000-0002-8317-4318
  • Lucas Souza da Silveira lucas.s.silveira@ufv.br
    Programa de Pós-Graduação em Estatística Aplicada e Biometria, Universidade Federal de Viçosa, Viçosa, MG, Brasil. https://orcid.org/0000-0003-4356-751X
  • Antônio Policarpo Souza Carneiro policarpo@ufv.br
    Programa de Pós-Graduação em Estatística Aplicada e Biometria, Universidade Federal de Viçosa, Viçosa, MG, Brasil. https://orcid.org/0000-0002-9043-3242
  • Vinicius Silva dos Santos 2santosvinicius@gmail.com
    Universidade Federal do Acre, Rio Branco, AC, Brasil. https://orcid.org/0000-0002-8387-2917

DOI:

10.31413/nativa.v10i4.13448

Keywords:

rice blast, statistical modelling, genomics wide selection, ROC analysis, accuracy

Abstract

In recent years, rice crop losses have increased due to biotic and abiotic stresses, among which brusone, which can result in 100% losses in susceptible rice cultivars. Therefore, it becomes strategic to identify methodologies that select resistant cultivars. In this work, we aimed to use ROC (Receiver operator characteristic) curve analysis and traditional measures to evaluate the performance of genomic estimation models (RR-BLUP, BLASSO and Bayes Cπ) in identifying rice resistance to brusone. The RR-BLUP and Bayes Cπ models were most accurate for the prediction of brusone resistance, while the best runtime was obtained by RR-BLUP. The area under the ROC curve was equivalent to traditional measures to evaluate the accuracy of the models, with the advantage of allowing graphical evaluation. By graphical analysis, BLASSO performed worst at high levels of specificity (>0.75). At lower levels of specificity, the sensitivity of the models was similar. The ROC methodology proved to be a good alternative for the evaluation of genomic prediction models, and can be used for the selection of rice cultivars resistant to brusone.

References

AZEVEDO, C. F.; DE RESENDE, M. D. V.; E SILVA, F. F.; VIANA, J. M. S.; VALENTE, M. S. F.; RESENDE JR., M. F. R.; MUÑOZ, P. Ridge, Lasso and Bayesian additive-dominance genomic models. BMC Genetics, v. 16, n. 1, p. 1-13, 2015. https://doi.org/10.1186/s12863-015-0264-2

BHERING, L. L.; JUNQUEIRA, V. S.; PEIXOTO, L. A.; CRUZ, C. D.; LAVIOLA, B. G. Comparison of methods used to identify superior individuals in genomic selection in plant breeding. Genetics and Molecular Research, v. 14, n. 3, p. 10888-10896, 2015. https://doi.org/10.4238/2015.september.9.26

BISCARINI, F.; STEVANATO, P.; BROCCANELLO, C.; STELLA, A.; SACCOMANI, M. Genome-enabled predictions for binomial traits in sugar beet populations. BMC Genetics, v. 15, n. 1, p. 87, 2014. https://doi.org/10.1186/1471-2156-15-87

CRUZ, C. D.; SALGADO, C. S.; BHERING, L. L. Genômica aplicada. Visconde de Rio Branco: Suprema Gráfica Editora, 2013. 424p.

DE LOS CAMPOS, G.; NAYA, H.; GIANOLA, D.; CROSSA, J.; LEGARRA, A.; MANFREDI, E.; WEIGEL, K.; COTES, J. M. Predicting Quantitative Traits With Regression Models for Dense Molecular Markers and Pedigree. Genetics, v. 182, n. 1, p. 375-385, 2009. https://doi.org/10.1534/genetics.109.101501

DIXIT, S.; SINGH, U. M.; SINGH, A. K.; ALAM, S.; VENKATESHWARLU, C.; NACHIMUTHU, V. V.; YADAV, S.; ABBAI, R.; SELVARAJ, R.; DEVI, M. N.; RAMAYYA, P. J.; BADRI, J.; LAKSHMI, T. R. J.; LAKSHMIDEVI, G.; VIDHYA J. L. R. K.; PADMAKUMARI, A. P.; LAHA, G. S.; PRASAD, M. S.; SEETALAM, M.; SINGH, V. K.; KUMAR, A. Marker Assisted Forward Breeding to Combine Multiple Biotic-Abiotic Stress Resistance/Tolerance in Rice. Rice, v. 13, n. 29, p. 1-15, 2020. https://doi.org/10.1186/s12284-020-00391-7

FANG, M.; JIANG, D.; LI, D.; YANG, R.; FU, W.; PU, L.; GAO, H.; WANG, G.; YU, L. Improved LASSO priors for shrinkage quantitative trait loci mapping. Theoretical and Applied Genetics, v. 124, n. 7, p. 1315-1324, 2012. https://doi.org/10.1007/s00122-012-1789-7

GADAL, N.; SHERSTHA, J.; POUDEL, M. N.; POKHAREL, B.; A review on production status and growing environments of rice in Nepal and in the world. Archives of Agriculture and Environmental Science, v. 4, n. 1, p. 83-87, 2019. https://doi.org/10.26832/24566632.2019.0401013

GIANOLA, D. Priors in whole-genome regression: the bayesian alphabet returns. Genetics, v. 194, p. 573-596, 2013. DOI: 10.1534%2Fgenetics.113.151753

HOSMER JR., D. W.; LEMESHOW, S.; STURDIVANT, R. X. Applied Logistic Regression. 3o ed. Hoboken: John Wiley & Sons, Inc., 2013. 510p.

JIANG, H.; FENG, Y.; QIU, L.; GAO, G.; ZHANG, Q.; HE, Y. Identification of Blast Resistance QTLs Based on Two Advanced Backcross Populations in Rice. Rice, v. 13, n. 31, 1-15, 2020. https://doi.org/10.1186/s12284-020-00392-6

LING, C. X.; HUANG, J.; ZHANG, H. AUC: A Better Measure than Accuracy in Comparing Learning Algorithms. In: In: Xiang Y., Chaib-draa B. (Ed.) Advances in Artificial Intelligence. Canadá, 2003. p. 329-341. https://doi.org/10.1007/3-540-44886-1_25

MACKILL, A. O.; BONMAN, J. M. Inheritance of blast resistance in near-isogenic lines of rice. Phytopathology, v. 82, p. 746-749, 1992. https://doi.org/10.1590/S0100-84551996000400012

MARTINS, B. E. M.; CHAIBUB, A. A.; CORTÊS, M. V. C. B.; SILVA LOBO, V. L.; FILIPPI, M. C. C. Characterization of bacterial isolates for sustainable rice blast control. Revista Caatinga, v. 33, n. 3, p. 702-712, 2020. https://doi.org/10.1590/1983-21252020v33n313rc

MEUWISSEN, T. H. E.; HAYES, B. J.; GODDARD, M. E. Prediction of total genetic value using genome-wide dense marker maps. Genetics, v. 157, n. 4, p. 1819-1829, 2001. https://doi.org/10.1093/genetics/157.4.1819

NASCENTE, A. S.; FILIPPI, M. C. C.; SOUSA, T. P.; CHAIBUB, A. A.; SOUZA, A. C. A.; LANNA, A. C. Upland rice gas exchange, nutrient uptake and grain yield as affected by potassium fertilization and inoculation of the diazotrophic bacteria Serratia spp. Australian Journal of Crop Science, v. 13, n. 6, p. 944-953, 2019. https://doi.org/10.21475/ajcs.19.13.06.p1689

NIZOLLI, V. O.; PEGORARO, C.; DE OLIVEIRA, A. C. Rice blast: strategies and challenges for improving genetic resistance. Crop Breeding Applied Biotechnology, v. 21, e387721S9, 2021. http://dx.doi.org/10.1590/1984-70332021v21Sa22

PÉREZ, P.; DE LOS CAMPOS, G. Genome-wide regression and prediction with the BGLR statistical package. Genetics, v. 198, n. 2, p. 483-495, 2014. https://doi.org/10.1534/genetics.114.164442

RAMALINGAM, J.; RAVEENDRA, C.; SAVITHA, P.; VIDYA, V.; CHAITHRA, T. L.; VELPRABAKARAN, S.; SARASWATHI, R.; RAMANATHAN, A.; PILLAI, M. P. A.; ARUMUGACHAMY, S.; VANNIARAJAN, C. Gene Pyramiding for Achieving Enhanced Resistance to Bacterial Blight, Blast, and Sheath Blight Diseases in Rice. Frontiers in Plant Science, v. 11, 2020. https://doi.org/10.3389/fpls.2020.591457

RATHNA, P. T. S.; NELSON, A. R. L. E.; RAVICHANDRAN, K.; ANTONY, R. Nutritional and functional properties of coloured rice varieties of South India: a review. Journal of Ethnic Foods, v. 6, p. 7-11, 2019. https://doi.org/10.1186/s42779-019-0017-3

RESENDE, M. D. V; SILVA, F. F.; AZEVEDO, C. F. Estatística matemática, biométrica e computacional: modelos mistos, multivariados, categóricos e generalizados (REML/BLUP), inferência bayesiana, regressão, aleatória, seleção genômica, QTL, GWAS, estatística espacial e temporal, competição, sobrevivência. 1. ed. [s.l.] : Suprema Gráfica Editora, 2014. 881p.

RUTKOSKI, J. E.; POLAND, J. A.; SINGH, R. P.; et al. Genomic selection for quantitative adult plant stem rust resistance in wheat. The Plant Genome, v. 7, n. 3, p. 1-10, 2014. DOI: 10.3835/plantgenome2014.02.0006

SOUZA, D. C.; RUSSINI, A.; VARGAS, R. R.; BOTTEGA, E. L.; SCHLOSSER, J. F.; FARIAS, M. S. Determinação de área mínima para aquisição de colhedora para a colheita do arroz irrigado na fronteira oeste do Rio Grande do Sul. Tecno-Lógica, v. 24, n. 2, p. 208-214, 2020. http://dx.doi.org/10.17058/tecnolog.v24i2.14904

VERMA, D. K.; SRIVASTAV, P. P. Bioactive compounds of rice (Oryza sativa L.): Review on paradigm and its potential benefit in human health. Trends in Food Science & Technology, v. 97, p. 355-365, 2020. https://doi.org/10.1016/j.tifs.2020.01.007

VITEZICA, Z. G.; VARONA, L.; LEGARRA, A. On the additive and dominant variance and covariance of individuals within the genomic selection scope. Genetics, v. 195, n. 4, p. 1223-1230, 2013. https://doi.org/10.1534/genetics.113.155176

WIRASWATI, S. M.; RUSMANA, I.; NAWANGSIH, A. A.; WAHYUDI, A. T. Antifungal activities of bacteria producing bioactive compounds isolated from rice phyllosphere against Pyricularia oryzae. Journal of Plant Protection Research, v. 59, n. 1, p. 86-94, 2019. https://doi.org/10.24425/jppr.2019.126047

ZHAO, K.; TUNG, C.-W.; EIZENGA, G. C.; et al. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communications, v. 2, n. 1, p. 467, 2011. https://doi.org/10.1038/ncomms1467.

Published

2022-11-02 — Updated on 2023-11-30

Versions

How to Cite

Gomes da Silva Neto, Z., Martins Filho, S. ., Souza da Silveira, L., Policarpo Souza Carneiro, A., & Silva dos Santos, V. (2023). Performance of genomic estimation methods in the identification of rice resistance to brusone. Nativa, 10(4), 466–471. https://doi.org/10.31413/nativa.v10i4.13448 (Original work published November 2, 2022)

Issue

Section

Agronomia / Agronomy