Absorción de zinc por yerba mate

Autores/as

DOI:

10.31413/nativa.v9i5.11895

Palabras clave:

biofortificação agronômica, Cambissolo, Ilex paraguariensis

Resumen

A deficiência de zinco representa um problema de saúde pública. Uma das estratégias para melhorar essa questão consiste em biofortificação agronômica. O objetivo dessa pesquisa foi avaliar o teor de Zn na parte aérea (folhas e ramos) e o limite crítico de Zn para plantas de erva-mate submetidas a adubação com sulfato de Zn. O experimento foi conduzido em casa de vegetação no município de Lages. Foi utilizado Cambissolo Háplico Distrófico Típico, o qual foi submetido a análise química (Tedesco et al., 1995) e granulométrica (EMBRAPA, 1997). O delineamento experimental utilizado foi o inteiramente casualizado. As unidades experimentais foram compostas por vasos contendo 6 kg de solo, cinco doses de Zn (0, 100, 200, 300 e 400 mg.kg-1) e sete repetições, totalizando 35 unidades experimentais. Foram realizadas análises antes da colheita (Índice SPAD, altura e Infrared Gas Analyser - IRGA) e análises após a colheita (peso fresco e seco de parte aérea, teor de Ca, Mg, P, Cu, Zn na folha). Os dados foram submetidos a análise de variância, com normalidade testada pelo teste de Shapiro-Wilk e a homogeneidade de variâncias pelo teste de Levenne, a nível de significância de 5%. A aplicação de doses crescentes de Zn ao solo resultou em aumento do teor de Zn na parte aérea de forma linear.  O teor médio de Zn na folha variou de 27 mg kg-1 na ausência de aplicação de Zn a 883 mg kg-1 na dose aplicado de 400 mg kg-1.  Não houve diferença estatística para massa fresca, seca de parte aérea, índice SPAD, altura, condutância estomática e transpiração indicando ausência de estresse oxidativo. Não foi possível calcular o limite crítico de Zn para erva-mate.

Palavras-chave: biofortificação agronômica; Cambissolo; Ilex paraguariensis.

 

Diagnose yerba mate nutritional and photosynthetic indices under different levels of zinc fertilization

 

ABSTRACT: Zinc deficiency represents a public health problem. One of the strategies to improve this issue is agronomic biofortification. The objective of this research was to evaluate the Zn content in the aerial part (leaves and branches) and the critical limit of Zn for yerba mate plants submitted to fertilization with Zn sulfate. The experiment was conducted in a greenhouse in the municipality of Lages. A typical Dystrophic Cambisol was used, which was subjected to chemical (Tedesco et al., 1995) and granulometric (EMBRAPA, 1997) analysis. The experimental design used was completely randomized. The experimental units were composed of pots containing 6 kg of soil, five doses of Zn (0, 100, 200, 300 and 400 mg.kg-1) and seven replications, totaling 35 experimental units. Analyzes were performed before harvesting (SPAD Index, height and Infrared Gas Analyzer - IRGA) and analyzes after harvesting (fresh and dry aerial weight, and Ca, Mg, P, Cu, Zn content in the leaf). The data were submitted to analysis of variance, with normality tested by the Shapiro-Wilk test and homogeneity of variances by the Levenne test, at a significance level of 5%. The application of increasing doses of Zn to the soil resulted in a linear increase in the Zn content in the aerial part. The average Zn content in the leaf varied from 27 mg kg-1 in the absence of Zn application to 883 mg kg-1 at the applied dose of 400 mg kg-1. There was no statistical difference for fresh, dry shoot weight, SPAD index, height, stomatal conductance and perspiration indicating absence of oxidative stress. It was not possible to calculate the critical limit of Zn for yerba mate.

Keywords: biofortification agronomic; Cambisol; Ilex paraguariensis.

Citas

ARÇARI, D. P.; BORZOLAN, V. P.; RODRIGUES, E. R.; MARTINS, F.; LIMA, R. J.; SAWAYA, A. C. H. F.; CARVALHO, P. O. Effect of mate tea (Ilex paraguariensis) supplementation on oxidative stress biomarkers and LDL oxidisability in normo-and hyperlipidaemic humans. Journal of Functional Foods, v. 3, n. 3, p. 190-197, 2011. DOI: https://doi.org/10.1016/j.jff.2011.04.001.

ARZI, A.; AHAMEHE, M.; SARAHROODI, S. Effect of hydroalcoholic extract of Lavandula officinalis on nicotine-induced convulsion in mice. Pakistan Journal of Biological Sciences, v. 14, n. 11, p. 634-640, 2011. DOI: https://doi.org/10.3923/pjbs.2011.634.640

CAKMAK, I.; KALAYCI, M.; KAYA, Y.; TORUN, A.A.; AYDIN, N.; WANG, Y.; ARISOY, Z.; ERDEM, H.; YAZICI, A.; GOKMEN, O.; OZTURK, L.; HORST, W.J. Biofortification and localization of zinc in wheat grain. Journal Agric Food Chem, v. 58, p. 9092-9102, 2010. DOI: https://doi.org/10.1021/jf101197h

CARVALHO, P. E. R. Espécies Arbóreas Brasileiras: Coleção Espécies Arbóreas Brasileiras, vol. 1. Brasília: Embrapa Informações Tecnológica; Colombo, PR: Embrapa Florestas, 2003. 1039p.

CRUZ, J. B. F.; SOARES, H. F. Uma revisão sobre o zinco Ensaios e Ciência: Ciências Biológicas, Agrárias e da Saúde, v. 15, n. 1, p. 207-222, 2011.

DEMMENT, M. W.; YOUNG, M. M.; SENSENIG, R. L. Providing micronutrients through food-ased solutions: A key to human and national development. The Journal of Nutrition, v. 133, n. 11, p. 3879S-3885S, 2003. DOI: https://doi.org/10.1093/jn/133.11.3879S.

GADJEV, I.; STONE, J. M.; GECHEV, T. S. Programmed cell death in plants: new insights into redox regulation and the role of hydrogen peroxide. International Review of Cell and Molecular Biology, v. 270, p. 87-144, 2008. DOI: https://doi.org/10.1016/S1937-6448(08)01403-2.

GIBSON, R. Zinc: The missing link in combating micronutrient malnutrition in developing countries. Proceedings of the Nutrition Society, v. 65, n. 1, p. 51-60, 2006. DOI: https://doi.org/10.1079/PNS2005474.

HAASE, H.; ELLIGER, S.; BERTHOLD, N.; RICHTER, M. Revised D-A-CH-reference values for the intake of zinc, Journal of Trace Elements in Medicine and Biology, v. 61, p. 1-8, 2020. DOI: https://doi.org/10.1016/j.jtemb.2020.126536

BHUTTA, Z.; GIBSON, R. S.; KING, J. C.; LÖNNERDAL, B.; RUEL, M. T.; SANDTRÖM, B.; WASANTWISUT, E.; HOTZ, C. Assessment of the risk of zinc deficiency in populations and options for its control. Food and Nutrition Bulletin, v. 25, n.1 (suppl), 2004. https://doi:10.1177/15648265040251S205

JOO, Y. S.; KIM, H. W.; LEE, S.; NAM, K. L.; YUN, H. R.; JHEE, J. H.; HAN, S. H.; YOO, T. H.; KANG, S. W.; PARK, T. J. Dietary zinc intake and incident chronic kidney disease. Clinical Nutrition, v. 40, p. 1039-1045, 2021. DOI: https://doi.org/10.1016/j.clnu.2020.07.005

KABATA-PENDIAS, A. Trace elements in soils and plants. 4 ed. CRC Press, 2010. 548p.

KÜPPER, H.; ZHAO, F. J.; MCGRATH, S. P. Cellular Compartmentation of Zinc in Leaves of the Hyperaccumulator Thlaspi caerulescens. Plant Physiology, v. 119, n. 1, p. 305–312, 1999. DOI: https://doi.org/10.1104/pp.119.1.305.

LIN, Y.; AARTS, M. G. M. The molecular mechanism of zinc and cadmium stress response in plants. Cellular and Molecular Life Sciences, v. 69, n. 19, p. 3187-3206, 2012. DOI: https://doi.org/10.1007/s00018-012-1089-z.

MAGRI, E.; GUGELMIN, E. K.; GRABARSKI, F. A. P.; BARBOSA, J. Z.; AULER, A. C.; WENDLING, I.; PRIOR, S. A.; VALDUGA, A. T.; MOTTA, A. C. V. Manganese hyperaccumulation capacity of Ilex paraguariensis A. St. Hil. And occurrence of interveinal chlorosis induced by transient toxicity. Ecotoxicology and Environmnetal Safety, v. 203, p. 1-8, 2020. DOI: https://doi.org/10.1016/j.ecoenv.2020.111010.

MAGRI, E.; VALDUGA, A. T.; GONÇALVES, I. L.; BARBOSA, J. Z.; RABEL, D. O.; MENEZES, I. M. N. R.; NASCIMENTO, P. A. N.; OLIVEIRA, A.; CORREA, R. S.; MOTTA, A. C. V. Cadmium and lead concentrations in yerba mate leaves from agroforestry and plantation systems: An international survey in South America. Journal of Food Composition and Analysis, v. 96, p. 1-10, 2021. DOI: https://doi.org/10.1016/j.jfca.2020.103702.

MARTIN, J. G.; PORTO, E.; ALENCAR, S. M. de; GLÓRIA, E. M. da; CORRÊA, C. B.; CABRAL, I. S. R. Antimicrobial activity of yerba mate (Ilex paraguariensis St. Hil.) against food pathogens. Revista Argentina de microbiologia, v. 45, n. 2, p. 93-98, 2013. DOI: https://doi.org/10.1016/S0325-7541(13)70006-3.

MEHRI, A. Trace Elements in Human Nutrition (II) – An Update. International Journal of Preventive Medicine, v. 11, n. 2, p. 1-17, 2020. DOI: https://doi.org/10.4103/ijpvm.IJPVM_48_19

MOTTA, A. C.; BARBOSA, J. Z.; MAGRI, E.; PEDREIRA, G. Q.; SANTIN, D.; PRIOR, S. A.; CONSALTER, R.; YOUNG, S. D.; BROADLEY, M. R.; BENEDETTI, L. E. Elemental composition of yerba mate (Ilex paraguariensis A.St.-Hil.) under low input systems of southern Brazil. Science of The Total Environment, v. 736, n. 20, e139637, 2020. DOI: https://doi.org/10.1016/j.scitotenv.2020.139637

PARDINHO, R. B.; VECCHIA, P. D.; ALVES, C. M. A. C.; PIMENTEL, N.; GAZZANA, D.; BOLZAN, R. C; DUARTE, F. A.; BISOGNIN, A. A.; FLORES, E. M. M. Ilex Paraguariensis exposition to As and Cd in a closed soilless system. Chemosphere, v. 258, p. 1-8, 2020. DOI: https://doi.org/10.1016/j.chemosphere.2020.127284

PEREIRA, D. F.; KAPPEL, V. D.; CAZAROLLI, L. H.; BOLIGON, A. A.; ATHAYDE, M. L.; GUESSER, S. M.; DA SILVA, E. L.; SILVA, F. R. M. B. Influence of the traditional Brazilian drink Ilex paraguariensis tea on glucose homeostasis. Phytomedicine, v. 19, n. 10, p. 868-877, 2012. DOI: https://doi.org/10.1016/j.phymed.2012.05.008

PRASAD, A. S. Zinc: mechanisms of host defense. The Journal of Nutrition, v. 137, n. 5, p. 1345-1349, 2007. https://doi.org/10.1093/jn/137.5.1345

REIS, E. M.; RÖPKE, J.; BUSANELLO, P. R.; LEAL, C. Q.; WAGNER, C.; BOLIGON, A. A.; ATHAYDE, M. L.; FACHINETTO, R. Effect of Hypericum perforatum on different models of movement disorders in rats. Behavioural pharmacology, v. 24, n. 7, p. 623-627, 2013. DOI: https://doi.org/10.1097/FBP.0b013e3283656d68

SILVA, A. S.; CAMPOS, M. L.; MIQUELUTTI, D. J.; PEREIRA, E. R.; DORS, P. Physiological response of mate herb cultivated in lead contaminated soil: effects of exposure to the trace element. Ciência e Técnica Vitivinícola, v. 34, n. 3, p. 125-145, 2019.

SIMÕES, C. M. O. Farmacognosia: da planta ao medicamento. 3 ed. Florianópolis: UFSC, 2001. 833p.

SOARES, C. R. F. S.; GRAZZIOTI, P. H.; SIQUEIRA, J. O.; CARVALHO, J. G. de; MOREIRA, F. M. S. Toxidez de zinco no crescimento e nutrição de Eucalyptus maculata e Eucalyptus urophylla em solução nutritiva. Pesquisa Agropecuária Brasileira, v. 36, n. 2, p. 339-348, 2001. DOI: https://doi.org/10.1590/S0100-204X2001000200018

VAN, A. F.; CLIJSTERS, H. Inibição da fotossíntese em Phaseolus vulgaris por tratamento com concentração tóxica de zinco: efeito na ribulose-1, 5-bisfosfato carboxilase/oxigenase. Journal of Plant Physiology, v. 125, n. 3-4, p. 355-360, 1986. DOI: https://doi.org/10.1002/pld3.357

Publicado

2021-12-18 — Actualizado el 2023-10-05

Versiones

Cómo citar

Gelsleichter, S. D. ., Massaneiro, H. M. A., Silva, A. de S. da, Dors, P. ., Miquelluti, D. J., Campos, M. L., & Moreira, M. A. (2023). Absorción de zinc por yerba mate. Nativa, 9(5), 494–499. https://doi.org/10.31413/nativa.v9i5.11895 (Original work published 18 de diciembre de 2021)

Número

Sección

Agronomia / Agronomy

Artículos más leídos del mismo autor/a