DEVELOPMENT OF ALTERNATIVE METEOROLOGICAL STATION INTEGRATED WITH WEB AND ANDROID APPLICATIONS
DOI:
https://doi.org/10.31413/nat.v12i4.18494Keywords:
Arduino, Agricultural Production, Weather DataAbstract
The objective of this work was to develop an alternative meteorological station using Arduino, to integrate it with the Web application and an Android. The meteorological station was developed using Arduino and air temperature sensors, relative air humidity, wind speed and rain. It was built next to a validation weather station. The Android application was developed with the MIT App Inventor platform, integrated with the bluetooth module, and the Web application was developed with PHP programming language, integrated to the SIM800L module, and stored the data in MySql database. The data from the meteorological stations presented “almost perfect” correlation and low rating for the root of the square average error. The Willmott index had high concordance and the performance index was “great”. The Android application consulted the data every minute and made it possible to connect to the Web application via the Internet. The Web application consulted the latest data received, integrated it into the Thingspeak Cloud channel, allowed administrators to import the text file, view records per minute and hour, download the data and send it via e-mail. The results will serve as a basis for projects with Arduino with application integration.
References
ANDREA, M. C. S.; DALLACORT, R.; TIEPPO, R. C.; BARBIERI, J. D. Assessment of climate change impact on double-cropping systems. SN Applied Sciences, v. 2, p. 1-13, 2020. https://doi.org/10.1007/s42452-020-2325-z
APP INVENTOR. MIT App Inventor. 2024. https://ai2.appinventor.mit.edu/
ARAÚJO, J. L. P.; RODRIGUES, C. C.; CHASE, O. A.; SILVA, K. P.; NUNES, H. G. G. C.; BEIRÃO, A. T. M. Desenvolvimento e implementação de uma estação meteorológica automática embarcada baseada em tecnologia IoT. Nativa, v. 12, n. 1, p. 80-89, 2024. https://doi.org/10.31413/nativa.v12i1.16796
ASADULLAH, M.; ULLAH, K. Smart Home Automation System Using Bluetooth Technology. In: INTERNATIONAL CONFERENCE ON INNOVATIONS IN ELECTRICAL ENGINEERING AND COMPUTATIONAL TECHNOLOGIES, 2017. Peshawar, Pakistan. Anais [...] Karachi, Pakistan, 2017. p. 1-6. https://doi.org/10.1109/ICIEECT.2017.7916544
BARAKI, P.; SHASTRI, S.; MOHEMMED, A.; HEGDE, A. Real Time Weather Analysis Using ThingsSpeak. International Journal of Pure and Applied Mathematics, v. 120, n. 6, p. 661-682, 2018.
CAMARGO, A. P; SENTELHAS, P. C. Avaliação do desempenho de diferentes métodos de estimativas da evapotranspiração potencial no Estado de São Paulo, Brasil. Revista Brasileira de Agrometeorologia, v. 5, n. 1, p. 89-97, 1997.
CAMPBELL SCIENTIFIC. Campbell Scientific - Produtos. 2024. https://www.campbellsci.com.br.
DA SILVA, G. M.; DALLACORT, R.; DA SILVA ANDREA, M. C.; DE QUEIROZ, T. M. Suitable weather condition frequency for fungicide soybean application in Tangará da Serra, Mato Grosso, Brazil. Revista Ceres, v. 68, n. 4, p. 245-256, 2021. https://doi.org/10.1590/0034-737X202168040001
ESTEVAM, D. O.; SALVARO, G. I. J.; SANTOS, V. J. D. Os desafios da inserção formal de produtos da agricultura familiar no mercado. Redes. Revista do Desenvolvimento Regional, v. 23, n. 1, 2018. https://doi.org/10.17058/redes.v23i1.11176
HOPKINS, W. G. A New View of Statistics. Internet Society for Sport Science. Versão On-line. 2016. https://www.sportsci.org/resource/stats/newview.html
IPCC_Painel Intergovernamental Sobre Mudanças Climáticas. Climate Change 2022: Impacts, Adaptation and Vulnerability. Genebra, Suíça, 2022. https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/
LATORRACA, D. Guia do investidor 2018: as grandes oportunidades do agro de Mato Grosso. Cuiabá: Instituto Mato-Grossense de Economia Agropecuária – IMEA, 2018. 23p.
MORÓN, C.; DIAZ, J. P.; FERRÁNDEZ, D.; SAIZ, P. Design, development and implementation of a weather station prototype for renewable energy systems. Energies, v. 11, e2234, 2018. https://doi.org/10.3390/en11092234
MOTA, W. N.; ALVES JUNIOR, J. EVANGELISTA, A. W. P.; CASAROLI, D. SMUT - Sistema de Baixo Custo para Aquisição de Temperatura e Umidade Relativa do Ar para Manejo de Irrigação. Engenharia na Agricultura, v. 26, n. 1, p. 89-99, 2018. https://doi.org/10.13083/reveng.v26i1.897
MUANGPRATHUB, J.; BOONNAM, N.; KAJORNKASIRAT, S.; LEKBANGPONG, N.; WANICHSOMBAT, A.; NILLAOR, P. IoT and agriculture data analysis for smart farm. Computers and Electronics in Agriculture, v. 156, p. 467-474, 2019. https://doi.org/10.1016/j.compag.2018.12.011
NETTO, G. T.; ARIGONY-NETO, J. Open-source Automatic Weather Station and Electronic Ablation Station for measuring the impacts of climate change on glaciers. HardwareX, v. 5, e53, 2019. https://doi.org/10.1016/j.ohx.2019.e00053
PEREIRA, A. R.; ANGELOCCI, L. R.; SENTELHAS, P. C. Agrometeorologia: Fundamentos e Aplicações Práticas. Guaíba: Ed. Agropecuária, 2002. 478p.
ROCHA, L. A. G.; SILVA, B. A. R.; COSTA, D. I. Comparação de desempenho de sensores de baixo custo com sensores comerciais para a coleta de dados ambientais. Fórum Ambiental da Alta Paulista, v. 15, n. 4, e2198, 2019. https://doi.org/10.17271/1980082715420192198
SANCHES, R. G.; SILVA, M. S. D.; SANTOS, B. C.; PEREIRA, D. N. B. Proposta de Pluviômetro de Baixo Custo Utilizando a Plataforma de Prototipagem Arduino. In: ARCHIMEDES, P. F.; AMORIM, R. R. (Orgs.). Os desafios da Geografia Física na fronteira do conhecimento. Campinas, SP: Instituto de Geociências/Unicamp, e-book, v. 1, 2017. https://doi.org/10.20396/sbgfa.v1i2017.2416
SILVA, A. C. M.; SILVA, M. A.; MIRANDA, J. P. L.; SANTOS, M. C. P.; FACEROLI, S. T. Estação Meteorológica Automática de Baixo Custo. Multiverso - Revista Eletrônica do Campus Juiz de Fora, v. 1, n. 1, p. 46-56, 2016.
SOUSA, R. R.; ANTUNES, J. P.; CABRAL, I. Estação metereológica experimental de baixo custo. Geo UERJ, n. 27, p. 80-97, 2015. https://doi.org/10.12957/geouerj.2015.12335
SOUZA, A. F.; CAMPELO JÚNIOR, J. H. Desempenho de métodos de estimativa da evapotranspiração de referência para região da Baixada Cuiabana, MT. Agrometeoros, v. 25, n. 2, p. 393-405, 2017.
TATOVIĆ, M.; MILOVANOVIĆ, A.; KARAPANDŽIĆ, I. Device for the Remote Measurement of Meteorological Data Based on Arduino Platform. Serbian Journal of Electrical Engineering, v. 13, n. 1, p. 133-144, 2016. https://doi.org/10.2298/SJEE1601133T
WILLMOTT, C. J. On the validation of models. Physical Geography, v. 2, p. 184-194, 1981.
Downloads
Published
Issue
Section
How to Cite
License
Copyright (c) 2024 Nativa

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright for articles published in this journal are the authors, with first publication rights granted to the journal. The journal shows open access, and articles are free to use, with proper attribution, in educational and non-commercial.
The articles published in this journal may be reproduced in part or used as a reference by other authors, provided that the source is quoted.

