Numerical Study Via Finite Element Analysis of the Structural Behavior of Rigid Pavement of Aerodromes

Autores

  • Albert Willian Faria awfaria2021@gmail.com
    Universidade Federal do Triângulo Mineiro
  • Eduardo Matiola Souza matiola.eduardo@gmail.com
    Professor, Dep. Engenharia Civil, Universidade Federal do Triângulo Mineiro - UFTM
  • Rodrigo Alves e Silva r.esilva@queensu.ca
    Centre at Queens-RMC, Department of Civil Engineering, Queen’s University.

DOI:

10.18607/ES202099827

Palavras-chave:

Concrete airfield pavement. Three-dimensional finite element analysis. Dowel bars. Transverse joint.

Resumo

The present study develops a 3D numerical model of the concrete pavement system of aerodromes in contact with the main landing gear of aircrafts using Finite Element Method (FEM). The pavement system used in the analysis consisted of six concrete slabs overlaying a subgrade medium with stiffness k. Doweled bars are considered for the pavement transverse joints while aggregate interlocks are considered for longitudinal joints. A parametric study was conducted to validate the model numerically, as well as to investigate the influence of the doweled bars, aggregate interlocks and subgrade stiffness on the pavement deflections when it is subjected to a dynamic load. About 77% decrease in deflection was attained due to the presence of doweled bars. This study additionally presents a methodology for designing the pavement thickness and the compressive strength of concrete based upon the Mohr-Coulomb’s failure criterion. It is found that for a pavement thickness of 0.305m the minimum compressive strength of concrete should be 28 MPa.

##plugins.generic.paperbuzz.metrics##

##plugins.generic.paperbuzz.sourceName.pdf##
250
Apr 25 '20Apr 28 '20May 01 '20May 04 '20May 07 '20May 10 '20May 13 '20May 16 '20May 19 '20May 22 '207.0
| |

Biografia do Autor

Albert Willian Faria, Universidade Federal do Triângulo Mineiro

Departamento de Engenharia Civil

Eduardo Matiola Souza, Professor, Dep. Engenharia Civil, Universidade Federal do Triângulo Mineiro - UFTM

Engenheiro Civil pela UFTM.

Rodrigo Alves e Silva, Centre at Queens-RMC, Department of Civil Engineering, Queen’s University.

Doutorando em Engenharia Civil na Queen's University.

Referências

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6118. Projeto de estruturas de concreto – Procedimento. RJ, Associação Brasileira de Normas Técnicas, 2014.

ALVAPPILLAI, A.; ZAMAN, M.; LAGUROS, J. Finite element algorithm for joited concrete pavements subjected to moving aircraft. Computers and Geotechnics, v.14, n. 3, p. 121-147, 1992. doi.org/10.1016/0266-352X(92)90030-W

ANSYS. ANSYS Help: Mechanical APDL Documentation. 2018.

BALBO, J. T. Pavimentos de concreto. 1st ed. São Paulo: Ed. Oficina de Textos, 2009.

BEER, F.; JOHNSTON Jr., E. R.; DEWOLF, J.; MAZUREK, D. Mechanics of Materials. 7th Ed., New York: McGraw-Hill Education, 2015.

BUDYNAS, R. G.; NISBETT, J. K. Shigley's Mechanical Engineering Design. 10th Ed., New York: McGraw-Hill Education, 2015.

CALIENDO, C.; PARISI, A. Stress-Prediction Model for Airport Pavements with Jointed Concrete Slabs. Journal of Transportation Engineering, v. 136, n. 7, p. 664-677, 2010. doi: 10.1061/(ASCE)TE.1943-5436.0000151

DELATTE, N. Concrete Pavement Design, Construction and Performance. 1st ed. New York: Ed. Taylor&Francis, 2008.

KANDEKAR, S. B.; TALIKOTI, R. S. Torsional behaviour of reinforced concrete beam wrapped with aramidfiber. Journal of King Saud University:Engineering Sciences, v. 3, n. 4, p. 340-344, 2019. doi: 10.1016/j.jksues.2018.02.001

KIM S. H.; PARK J. Y.; JEONG J. H. Effect of temperature-induced load on airport concrete pavement behavior. KSCE Journal of Civil Engineering, v.18, n.1, p.182-187, 2014. doi: 10.1007/s12205-014-0056-7

KIM, J.; HJELMSTAD, K. D. Three- Dimensional Finite Element Analysis of Doweled Joints for Airport Pavements. Annual Meeting of Transportation Research Board. Washington, D.C. Publication in Transportation Research Record, 2003. doi: 10.3141/1853-12

MAHMOUD, A. M. Finite element implementation of punching shear behaviors in shear-reinforced flat slabs. Ain Shams Engineering Journal, v. 6, p. 735-754, 2015. doi: 10.1016/j.asej.2014.12.015

PRAWESTI, P.; SUHENDRO, B.; HAPSORO, S. Evaluation of rigid pavement on apron of terminal 3 Soekarno-Hatta International Airport using finite element method. MATEC Web of Conferences, v. 270, 2019. doi: 10.1051/matecconf/201927003005

RODCHENKO, O. Computer Technologies for Concrete Airfield Pavement Design. Journal Aviation, v. 21, n. 3, p. 111-117, 2017. doi: 10.3846/16487788.2017.1379439

SILVA, S. C.; BANDEIRA, A. A. Analyses of reinforced concrete beams strengthened with CFRP under bending: theorical and computational approaches. Revista Ibracon de Estruturas & Materiais, v. 12, n. 2, p. 233-254, 2019. doi: 10.1590/s1983-41952019000200003

YAN-CONG, Z.; LING-LING, G. Effect of dowel bar position deviation on joint load-transfer ability of cement concrete pavement. International Journal of Pavement Research and Technology, v. 9, n. 1, p. 30-36, 2016. doi: 10.1016/j.ijprt.2016.01.002

Downloads

Publicado

2020-04-23

Como Citar

Faria, A. W., Souza, E. M., & e Silva, R. A. (2020). Numerical Study Via Finite Element Analysis of the Structural Behavior of Rigid Pavement of Aerodromes. E&Amp;S Engineering and Science, 9(1), 2–18. https://doi.org/10.18607/ES202099827