Redes neurais artificiais para estimar a iluminação natural em ambientes residenciais com obstrução do entorno
DOI:
10.18607/ES20231215233Resumo
Muitos países adotam instrumentos regulatórios para a melhoria do desempenho das edificações e a qualidade luminosa é frequentemente abordada em seus escopos. Métodos simplificados facilitam a aplicação de tais instrumentos e a inteligência artificial tem se mostrado útil para esse fim. Assim, o objetivo deste trabalho é a propor um metamodelo, utilizando-se redes neurais artificiais, para verificar o desempenho luminoso de edificações residenciais, considerando o impacto do entorno construído no contexto da revisão da norma brasileira “ABNT NBR 15.575-1 Edificações habitacionais — Desempenho”. Para isto, adotou-se a base de dados simulados para a proposta de revisão da norma, contendo 36.000 casos que relacionam a influência de obstruções externas à edificação ao seu desempenho quanto à suficiência e uniformidade da luz natural. Assim, metamodelos de redes neurais artificias Perceptron Multicamadas foram treinados com dados das cidades de Curitiba, Brasília e Belém. A arquitetura das redes consistiu em 3 camadas, a de entrada, uma oculta e a de saída. Testaram-se aspectos de sua arquitetura e do agrupamento dos parâmetros de entrada, as variáveis da edificação, e de saída, ALNE200lx,50% e ALNE60lx,50%. O seu desempenho global foi considerado aceitável, com erro percentual médio inferior a 10%, sendo necessário o seu refinamento para a redução de discrepantes. Concluiu-se que as RNA podem ser uma alternativa como método simplificado para aplicação na norma, apontando-se como opções de refinamento do metamodelo a variação do algoritmo de aprendizagem, da partição dos conjuntos de treinamento e teste, e a ampliação do seu escopo com outras proporções e transmissões visíveis.
##plugins.generic.paperbuzz.metrics##
Downloads
Publicado
Versões
- 2023-08-29 (2)
- 2023-08-04 (1)
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Raphaela Walger da Fonseca, Pedro Oscar Pizzetti Mariano, Prof. Fernando Oscar Ruttkay Pereira
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Todos os direitos autorais devem ser cedidos a Universidade Federal de Mato Grosso.