VARIABILIDADE ESPACIAL DO AMBIENTE TÉRMICO E DA ILUMINAÇÃO EM INSTALAÇÃO PARA FRANGOS DE CORTE EM REGIÃO SEMIÁRIDA

Autores

DOI:

https://doi.org/10.31413/nat.v12i4.17457


Palavras-chave:

aviário, conforto térmico, geoestatística, melhoria térmica, técnicas construtivas

Resumo

O ambiente térmico das instalações para produção de frangos pode ser influenciado por técnicas construtivas, região, clima e orientação, sendo que as suas variações afetam diretamente a produtividade. O objetivo foi avaliar a variabilidade espacial do ambiente térmico e da iluminação em uma instalação para frangos de corte comercial localizada em região semiárida e com orientação Leste-Oeste. Foram medidos os parâmetros ambientais (temperatura, umidade relativa do ar, velocidade do ar e iluminação) e os índices térmicos (Entalpia, Índice de Temperatura e Umidade, e Índice de Temperatura de Globo Negro e Umidade), com pontos espaçados de 1,0 x 1,0 m, no inverno e verão, em dois horários (9 e 15 horas). A análise ocorreu através da geoestatística e de mapas de krigagem. A instalação apresentou um ambiente causador de desconforto térmico, o que pode desfavorecer a produção de frango de corte, principalmente no período da tarde, em que as condições climáticas afetaram diretamente o seu interior. Portanto, para garantir boas condições para a produção, são necessárias medidas como a inserção de ventilação forçada, a nebulização ou utilização de resfriamento adiabático, a pintura do telhado com cores capazes de refletir parte da radiação solar, o aumento dos beirais para evitar a incidência direta da radiação no interior da instalação, o aumento do pé-direito e a arborização no entorno de modo a condicionar o microclima nas proximidades do galpão.

Palavras-chave: aviário; conforto térmico; geoestatística; melhoria térmica; técnicas construtivas.

 

Spatial variability of the thermal environment and lighting in a facility for broiler chickens in a semi-arid region

 

ABSTRACT: The thermal environment of poultry production facilities can be influenced by construction techniques, region, climate, and orientation, and these variations directly affect productivity. The objective was to evaluate the spatial variability of the thermal environment and lighting in a commercial broiler facility located in a semi-arid region with an East-West orientation. Environmental parameters (temperature, relative humidity, air velocity, and lighting) and thermal indices (Enthalpy, Temperature and Humidity Index, and Black Globe Temperature and Humidity Index) were measured at points spaced 1.0 x 1.0 m apart during winter and summer, at two times (9 a.m. and 3 p.m.). The analysis was conducted using geostatistics and kriging maps. The facility exhibited an environment that caused thermal discomfort, which could hinder broiler production, especially in the afternoon when climatic conditions directly affected the interior. Therefore, to ensure favorable production conditions, measures such as the insertion of forced ventilation, misting or adiabatic cooling, painting the roof with colors capable of reflecting part of the solar radiation, increasing eaves to prevent direct radiation from entering the facility, increasing ceiling height, and planting trees around the facility to condition the microclimate near the barn are necessary.

Keywords: poultry house; thermal comfort; geostatistics; thermal improvement; construction techniques.

Referências

ABPA_Associação Brasileira de Proteína Animal. Relatório anual 2020. Disponível em: <https://abpa-br.org/wp-content/uploads/2020/05/abpa_relatorio_anual_2020_portugues_web.pdf>. Acesso em: 18 set 2021.

BAÊTA F. C.; SOUZA, C. F. Ambiência em edificações rurais, conforto animal. 2 ed. Viçosa: Editora UFV, 2010. 269p.

BARBOSA FILHO, J. A.; SILVA, I. J.; SILVA, M. A.; SILVA, C. J. Behavior evaluation of laying hens using image sequences. Engenharia Agrícola, v. 27, n. 1, p. 93-99, 2007. https://doi.org/10.1590/S0100-69162007000100002

BRANCO, T.; MOURA, D. J. D.; NÄÄS, I. A.; LIMA, N. D. S.; KLEIN, D. R.; OLIVEIRA, S. R. D. M. The sequential behavior pattern analysis of broiler chickens exposed to heat stress. AgriEngineering, v. 3, p. 447-457, 2021. https://doi.org/10.3390/agriengineering3030030

BUFFINGTON, D. E.; COLLAZO-AROCHO, A.; CANTON, G. H.; PITT, D.; THATCHER, W. W.; COLLIER, R. J. Black globe-humidity index (BGHI) as comfort equation for dairy cows. Transactions of the ASAE, v. 24, n. 3, p. 711-714, 1981. https://doi.org/10.13031/2013.34325

CURI, T. M. D. C.; VERCELLINO, R. D. A.; MASSARI, J. M.; SOUZA, Z. M.; MOURA, D. J. D. Geostatistic to evaluate the environmental control in different ventilation systems in broiler houses. Engenharia Agrícola, v. 34, n. 6, p. 1062-1074, 2014. https://doi.org/10.1590/S0100-69162014000600004

DALÓLIO, F. S.; MOREIRA, J.; COELHO, D. J. R.; SOUZA, C. F. Bioclimatic characterization of an experimental shed broiler creation in the region of Diamantina-MG. Engenharia na Agricultura, v. 24, n. 1, p. 22-31, 2016. https://doi.org/10.13083/reveng.v24i1.648

FARIA, F. F. D.; MOURA, D. J. D.; SOUZA, Z. M. D.; MATARAZZO, S. V. Climatic spatial variability of a dairy free-stall barn. Ciência Rural, v. 38, n. 9, p. 2498-2505, 2008. https://doi.org/10.1590/S0103-84782008000900013

FAUSTINO, A. C.; TURCO, S. H.; SILVA JUNIOR, R. G.; MIRANDA, I. B.; ANJOS, I. E.; LOURENÇONI, D. Spatial variability of enthalpy and illuminance in free-range broiler sheds. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 25, n. 5., p. 340-344, 2021. https://doi.org/10.1590/1807-1929/agriambi.v25n5p340-344

FERRAZ, P. F.; YANAGI JUNIOR, T.; FERRAZ, G. A.; SCHIASSI, L.; CAMPOS, A. T. Spatial variability of enthalpy in broiler house during the heating phase. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 20, n. 6, p. 570-575, 2016. https://doi.org/10.1590/1807-1929/agriambi.v20n6p570-575

FOURNEL, S.; ROUSSEAU, A. N.; LABERGE, B. Rethinking environment control strategy of confined animal housing systems through precision livestock farming. Biosystems Engineering, v. 155, p. 96-123, 2017. https://doi.org/10.1016/j.biosystemseng.2016.12.005

GATES, R. S.; ZHANG, H.; COLLIVER, D. G.; OVERHULTS, D. G. Regional variation in temperature humidity index for poultry housing. Transactions of the ASAE, v. 38, n. 1, p. 197-205, 1995. https://doi.org/10.13031/2013.27830

INMET_Instituto Nacional de Meteorologia. Normais Climatológicas do Brasil (1991- 2020). Brasília. Disponível em: https://portal.inmet.gov.br/normais. Acesso em: 11 Out. 2024.

ISAAKS, E. H.; SRIVASTAVA, R. M. An introduction to applied geostatistics. 1 ed. New York: Oxford University Press, 1989. 592p.

KANG, S.; KIM, D. H.; LEE, S.; LEE, T.; LEE, K. W.; CHANG, H. H.; MOON, B.; AYASAN, T.; CHOI, Y. H. An acute, rather than progressive, increase in temperature-humidity index has severe effects on mortality in laying hens. Frontiers in Veterinary Science, v. 7, e568093, 2020. https://doi.org/10.3389/fvets.2020.568093

KHEIRALIPOUR, K.; RAFIEE, S.; KARIMI, M.; NADIMI, M.; PALIWAL, J. The environmental impacts of commercial poultry production systems using life cycle assessment: a review. World's Poultry Science Journal, v. 80, n. 1, p. 33-54, 2024. https://doi.org/10.1080/00439339.2023.2250326

LUNDGREN, W. J. C.; SILVA, J. A. A. D.; FERREIRA, R. L. C. Predictiong of eucalyptus wood by cokriging, kriging and regression. Cerne, v. 21, n. 2, p. 243-250, 2015. https://doi.org/10.1590/01047760201521021532

MASCARENHAS, N. M. H.; COSTA, A. N. L.; PEREIRA, M. L. L.; CALDAS, A. C. A.; BATISTA, L. F.; ANDRADE, E. L. G. Thermal conditioning in the broiler production: challenges and possibilities. Journal of Animal Behaviour and Biometeorology, v. 6, n. 2, p. 52-55, 2018. http://dx.doi.org/10.31893/2318-1265jabb.v6n2p52-55

NASCIMENTO, G. R. D.; PEREIRA, D. F.; NÄAS, I. D. A.; RODRIGUES, L. H. Thermal comfort fuzzy index for broiler chickens. Engenharia Agrícola, v. 31, n. 2, p. 219-229, 2011. https://doi.org/10.1590/S0100-69162011000200002

NKUKWANA, T. T. Global poultry production: current impact and future outlook on the South African poultry industry. South African Journal of Animal Science, v. 48, n. 5, p. 869-884, 2018. https://doi.org/10.4314/sajas.v48i5.7

OLIVEIRA JÚNIOR, A. J.; SOUSA, G. S.; DAL PAI, E.; ALMEIDA, O. C. P.; NETO, M. M.; SIMÕES, R. P.; SOUZA, S. R. L. System for assessing broilers thermal comfort. Smart Agricultural Technology, v. 1, e100007, 2021. https://doi.org/10.1016/j.atech.2021.100007

RODRIGUES, V. C.; SILVA, I. J. O.; VIEIRA, F. M. C.; NASCIMENTO, S. T. A correct enthalpy relationship as thermal comfort index for livestock. International Journal of Biometeorology, v. 55, p. 455-459, 2011. https://doi.org/10.1007/s00484-010-0344-y

SAEED, M.; ABBAS, G.; ALAGAWANY, M.; KAMBOH, A. A.; ABD EL-HACK, M. E.; KHAFAGA, A. F.; CHAO, S. Heat stress management in poultry farms: A comprehensive overview. Journal of Thermal Biology, v. 84, p. 414-425, 2019. https://doi.org/10.1016/j.jtherbio.2019.07.025

SANTOS, W. S.; LIMA, A. V.; NASCIMENTO, C. H.; CORDEIRO, L. S.; SOUZA, B. S.; MAIA, M. I. L.; AFO, D. I. B.; AZEVEDO, M. C.; ASSIS, H. J. X.; BORGES, P. F.; ARAÚJO, L. S. Profile of chicken meat consumers in the city of Salgueiro - PE - Brazil. Research, Society and Development, v. 11, n. 12, e307111233445, 2022. https://doi.org/10.33448/rsd-v11i12.33445

SARNIGHAUSEN, V. C. R.; NORIS, F. J.; FRANCO, J. R.; CAMPOS, F. S.; NARDI JÚNIOR, G.; SEVEGNANI, K. B.; SARTORI, D. L. Cenários de mudanças climáticas e efeitos na entalpia como índice biometeorológico. Nativa, v. 12, n. 3, p. 567-576, 2024. https://doi.org/10.31413/nat.v12i3.16222

SILVA, E. G. D.; SANTOS, A. C. D.; FERREIRA, C. L. S.; SOUSA, J. P. L. D.; ROCHA, J. M. L. D.; SILVEIRA JÚNIOR, O. Spatial variability of the environmental characteristics and weight of broilers in shed negative ventilation. Revista Brasileira de Saúde e Produção Animal, v. 14, n. 1, p. 132-141, 2013.

SILVA, E. T.; LEITE, D. G.; YURI, F. M. Determination of the Temperature and Humidity Index (ITU) for the Birds Production in Metropolitan Mesoregion of Curitiba - PR. Revista Acadêmica: ciências agrárias e ambientais, v. 2, n. 3, p. 47-60, 2004. https://doi.org/10.7213/cienciaanimal.v2i3.15099

SILVA, I. J. S.; VIEIRA, F. M. C. Animal ambiance and productive losses on the preslaughter handling: the Brazilian poultry production case. Archivos de zootecnia, v. 59, p. 113-131, 2010. https://doi.org/10.21071/az.v59i232.4910

TAINIKA, B.; ŞEKEROĞLU, A.; AKYOL, A.; WAITHAKA NG’ANG’A, Z. Welfare issues in broiler chickens: overview. World's Poultry Science Journal, v. 79, n. 2, p. 285-329, 2023. https://doi.org/10.1080/00439339.2023.2175343

THOM, E. C. The discomfort index. Weatherwise, v. 12, p. 57-61, 1959. https://doi.org/10.1080/00431672.1959.9926960

VIEIRA, S. R. Geoestatística em estudos de variabilidade espacial do solo. In: NOVAIS, R. F.; ALVAREZ, V. H.; SCHAEFER, G. R. (Eds.) Tópicos em Ciência do Solo. Viçosa: Socieadade Brasileira de Ciência do Solo, 2000. v. 1, p. 1-154.

WARRICK, A. W.; NIELSEN, D. R. Spatial variability of soil physical properties in the field. In: HILLEL, D. (Ed.) Applications of soil physics. New York: Academic Press, 1980. p. 319-344. https://doi.org/10.1016/B978-0-12-348580-9.50018-3

YAHAV, S.; STRASCHNOW, A.; VAX, E.; RAZPAKOVSKI, V.; SHINDER, D. Air velocity alters broiler performance under harsh environmental conditions. Poultry Science, v. 80, p. 724-726, 2001. https://doi.org/10.1093/ps/80.6.724

ZIMBACK, C. R. L. Análise espacial de atributos químicos de solos para fins de mapeamento da fertilidade do solo. 114f. Tese (Livre-Docência em Levantamento do solo e Fotopedologia) - Universidade Estadual Paulista, Botucatu, 2001.

Downloads

Publicado

2024-11-12

Edição

Seção

Engenharia Agrícola / Agricultural Engineering

Como Citar

VARIABILIDADE ESPACIAL DO AMBIENTE TÉRMICO E DA ILUMINAÇÃO EM INSTALAÇÃO PARA FRANGOS DE CORTE EM REGIÃO SEMIÁRIDA. (2024). Nativa, 12(4), 631-641. https://doi.org/10.31413/nat.v12i4.17457

Artigos mais lidos pelo mesmo(s) autor(es)