Production of bacterial cellulose from Kombucha tea and coffee husk infusion

Autores/as

DOI:

https://doi.org/10.31413/nat.v12i3.17720


Palabras clave:

Acetobacter xylinum, biomaterials, bacterial cellulose, coffee husk, Kombucha

Resumen

In this work, the best formulation of culture medium based on Kombucha tea and infusion of coffee husk for the production of bacterial cellulose (BC) from Acetobacter xylinum was determined. The highest BC production corresponded to the medium containing tea, coffee husk infusion, sugar and 0.005% methionine. This greater production occurred when the inoculum was kept in the dark, which allowed high multiplication of the microorganisms and, therefore, greater production of the polymer. The introduction of a new, feasible, malleable material from an environmentally friendly process will allow the replacement of materials with a greater impact on pollution and cost.

Referencias

ABDELRAOF, M.; HASANIN, M. S.; EL-SAIED, H. Ecofriendly green conversion of potato peel wastes to high productivity bacterial cellulose. Carbohydrate Polymers, v. 211, p. 75-83, 2019. https://doi.org/10.1016/j.carbpol.2019.01.095

AN, S. J.; LEE, S. H.; HUH, J. B.; JEONG, S. I.; PARK, J. S.; GWON, H. J.; KANG, E. S.; JEONG, C. M.; LIM, Y. M. Preparation and characterization of resorbable bacterial cellulose membranes treated by electron beam irradiation for guided bone regeneration. International Journal of Molecular Sciences, v. 18, n. 11, e2236, 2017. https://doi.org/10.3390/ijms18112236

ANTIER, P.; MINJARES, A.; ROUSSOS, S.; RAIMBAULT, M.; VINIEGRA-GONZALEZ, G. Pectinase-hyperproducing mutants of Aspergillus niger C28B25 for solid-state fermentation of coffee pulp. Enzyme and Microbial Technology, v. 15, n. 3, p. 254-260, 1993. https://doi.org/10.1016/0141-0229(93)90146-s

AVANTHI, A.; KUMAR, G. L.; BANERJEE, R. Partially consolidated bioprocessing of mixed lignocellulosic feedstocks for ethanol production. Bioresource Technology, v. 245, p. 530-539, 2017. https://doi.org/10.1016/j.biortech.2017.08.140

AWOYERA, P. O.; ADESINA, A. Plastic wastes to construction products: Status, limitations and future perspective. Case Studies in Construction Materials, v. 12, e00330, 2020. https://doi.org/10.1016/j.cscm.2020.e00330

BAE, S. O.; SHODA, M. Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor. Applied Microbiology and Biotechnology, v. 67, n. 1, p. 45-51, 2005. https://doi.org/10.1007/s00253-004-1723-2

BAE, S.; SHODA, M. Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnology Progress, v. 20, n. 5, p. 1366-1371, 2004. https://doi.org/10.1021/bp0498490

BAE, S.; SHODA, M. Statistical optimization of culture conditions for bacterial cellulose production using Box-Behnken design. Biotechnology and Bioengineering, v. 90, n. 1, p. 20-28, 2005. https://doi.org/10.1002/bit.20325

BAGEWADI, Z. K.; BHAVIKATTI, J. S.; MUDDAPUR, U. M.; YARAGUPPI, D. A.; MULLA, S. I. Statistical optimization and characterization of bacterial cellulose produced by isolated thermophilic Bacillus licheniformis strain ZBT2. Carbohydrate Research, v. 491, e107979, 2020. https://doi.org/10.1016/j.carres.2020.107979

BRENNER, D. J.; KRIEG, N. R.; STALEY, J. T.; GARRITY, G. M. (Eds.). Bergey’s Manual of Systematic Bacteriology. 2nd Edition, v. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria), Springer, New York, 2005.

BULDUM, G.; BISMARCK, A.; MANTALARIS, A. Recombinant biosynthesis of bacterial cellulose in genetically modified Escherichia coli. Bioprocess and Biosystems Engineering, v. 41, n. 2, p. 265-279, 2018. https://doi.org/10.1007/s00449-017-1864-1

CARREÑO, L.; CAICEDO, L.; ALFONSO, L.; MARTÍNEZ, C. Técnicas de fermentación y aplicaciones de la celulosa bacteriana: una revisión. Ingeniería y Ciencia, v. 8, n. 16, p. 307-335, 2012. http://www.redalyc.org/articulo.oa?id=83524625012

DAYAL, M. S.; GOSWAMI, N.; SAHAI, A.; JAIN, V.; MATHUR, G.; MATHUR, A. Effect of media components on cell growth and bacterial cellulose production from Acetobacter aceti MTCC 2623. Carbohydrate Polymers, v. 94, n. 1, p. 12-6, 2013. https://doi.org/10.1016/j.carbpol.2013.01.018

DE OLYVEIRA, G. M.; BASMAJI, P.; COSTA, L. M. M.; DOS SANTOS, M. L.; DOS SANTOS, C.; GUASTALDI, F. P. S.; SCAREL-CAMINAGA, R. M.; DE OLIVEIRA, T. S.; PIZONI, E.; GUASTALDI, A. C. Surface physical chemistry properties in coated bacterial cellulose membranes with calcium phosphate. Materials Science and Engineering: C, v. 75, p. 1359-1365, 2017. https://doi.org/10.1016/j.msec.2017.03.025

DU, R.; ZHAO, F.; PENG, Q.; ZHOU, Z.; HAN, Y. Production and characterization of bacterial cellulose produced by Gluconacetobacter xylinus isolated from Chinese persimmon vinegar. Carbohydrate Polymers, v. 194, p. 200-207, 2018. https://doi.org/10.1016/j.carbpol.2018.04.041

FATIMA, A.; ORTIZ-ALBO, P.; NEVES, L. A.; NASCIMENTO, F. X.; CRESPO, J. G. Biosynthesis and characterization of bacterial cellulose membranes presenting relevant characteristics for air/gas filtration. Journal of Membrane Science, v. 674, e121509, 2023. https://doi.org/10.1016/j.memsci.2023.121509

GOH, W. N.; ROSMA, A.; KAUR, B.; FAZILAH, A.; KARIM, A. A.; BHAT, R. Fermentation of black tea broth (Kombucha): I. effects of sucrose concentration and fermentation time on the yield of microbial cellulose. International Food Research Journal, v. 19, n. 1, p. 109-117, 2012. http://www.ifrj.upm.edu.my/19%20(01)%202011/(15)IFRJ-2011-105%20Rajeev.pdf

GORGIEVA, S.; JANČIČ, U.; CEPEC, E.; TRČEK, J. Production efficiency and properties of bacterial cellulose membranes in a novel grape pomace hydrolysate by Komagataeibacter melomenusus AV436T and Komagataeibacter xylinus LMG 1518. International Journal of Biological Macromolecules, v. 244, e125368, 2023. https://doi.org/10.1016/j.ijbiomac.2023.125368

HASANIN, M. S.; ABDELRAOF, M.; HASHEM, A. H.; SAIED, H. E. Sustainable bacterial cellulose production by Achromobacter using mango peel waste. Microbial Cell Factories, v. 22, e24, 2023. https://doi.org/10.1186/s12934-023-02031-3

HU, G.; PENG, X.; WANG, X.; LI, X.; LI, X.; QIU, M. Excavation of coffee maturity markers and further research on their changes in coffee cherries of different maturity. Food Research International, v. 132, 109121, 2020. https://doi.org/10.1016/j.foodres.2020.109121

HUSSAIN, Z.; SAJJAD, W.; KHAN, T.; WAHID, F. Production of bacterial cellulose from industrial wastes: a review. Cellulose, v. 26, p. 2895-2911, 2019. https://doi.org/10.1007/s10570-019-02307-1

JANG, W. D.; HWANG, J. H.; KIM, H. U.; RYU, J. Y.; LEE, S. Y. Bacterial cellulose as an example product for sustainable production and consumption. Microbial Biotechnology, v. 10, n. 5, p. 1181-1185, 2017. https://doi.org/10.1111/1751-7915.12744

JARAMILLO, R.; TOBIO, W.; ESCAMILLA, J. Efecto de la sacarosa en la producción de celulosa por Gluconacetobacter xylinus en cultivo estático. Revista MVZ Córdoba, v. 17, n. 2, p. 3004-3013, 2012. http://www.redalyc.org/articulo.oa?id=69323751008

JONAS, R.; FARAH, L. F. Production and application of microbial cellulose. Polymer Degradation and Stability, v. 59, n. 1-3, p. 101-106, 1998. https://doi.org/10.1016/S0141-3910(97)00197-3

JOSEPH, G.; ROWE, G. E.; MARGARITIS, A.; WAN, W. Effects of polyacrylamide-co-acrylic acid on cellulose production by Acetobacter xylinum. Journal of Chemical Technology and Biotechnology, v. 78, n. 9, p. 964-970, 2003. https://doi.org/10.1002/jctb.869

KACZMAREK, M.; JĘDRZEJCZAK-KRZEPKOWSKA, M.; LUDWICKA, K. Comparative Analysis of Bacterial Cellulose Membranes Synthesized by Chosen Komagataeibacter Strains and Their Application Potential. International Journal of Molecular Sciences, v. 23, n. 6, e3391, 2022. https://doi.org/10.3390/ijms23063391

KESHK, S. Physical properties of bacterial cellulose sheets produced in presence of lignosulfonate. Enzyme and Microbial Technology, v. 40, p. 9-12, 2006. https://doi.org/10.1016/j.enzmictec.2006.07.038

KRYSTYNOWICZ, A.; CZAJA, W.; WIKTOROWSKA-JEZIERSKA, A.; GONÇALVES-MIŚKIEWICZ, M.; TURKIEWICZ, M.; BIELECKI, S. Factors affecting the yield and properties of bacterial cellulose. Journal of Industrial Microbiology and Biotechnology, v. 29, n. 4, p. 189-195, 2002. https://doi.org/10.1038/sj.jim.7000303

KSIĄŻEK, E. Citric Acid: Properties, Microbial Production, and Applications in Industries. Molecules, v. 29, e22, 2024. https://doi.org/10.3390/molecules29010022

KUO, C.H.; CHEN, J. H.; LIOU, B. K.; LEE, C. K. Utilization of acetate buffer to improve bacterial cellulose production by Gluconacetobacter xylinus. Food Hydrocolloids, v. 53, p. 98-103, 2016. https://doi.org/10.1016/j.foodhyd.2014.12.034

KUROSUMI, A.; SASAKI, C.; YAMASHITA, Y.; NAKAMURA, Y. Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydrate Polymers, v. 76, n. 2, p. 333-335, 2009. https://doi.org/10.1016/j.carbpol.2008.11.009

LEE, S. Y.; KIM, H. U. Systems strategies for developing industrial microbial strains. Nature Biotechnology, v. 33, n. 10, p. 1061-1072, 2015. https://doi.org/10.1038/nbt.3365

LEIFA, F.; PANDEY, A.; SOCCOL, C. R. Solid state cultivation - An efficient method to use toxic agro-industrial residues. Journal of Basic Microbiology, v. 40, n. 3, p. 187-197, 2000. https://doi.org/10.1002/1521-4028(200007)40:3<187::AID-JOBM187>3.0.CO;2-Q

MATSUOKA, M.; TSUCHIDA, T.; MATSUSHITA, K.; ADACHI, O.; YOSHINAGA, F. A Synthetic Medium for Bacterial Cellulose Production by Acetobacter xylinum subsp. sucrofermentans. Bioscience, Biotechnology and Biochemistry, v. 60, n. 4, p. 575-579, 1996. https://doi.org/10.1271/bbb.60.575

NGUYEN, V. T.; FLANAGAN, B.; GIDLEY, M. J.; DYKES, G. A. Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha. Current Microbiology, v. 57, n. 5, p. 449-453, 2008. https://doi.org/10.1007/s00284-008-9228-3

NORO, N.; SUGANO, Y.; SHODA, M. Utilization of the buffering capacity of corn steep liquor in bacterial cellulose production by Acetobacter xylinum. Applied Microbiology and Biotechnology, v. 64, p. 199-205, 2004. https://doi.org/10.1007/s00253-003-1457-6

RAMANA, K. V.; TOMAR, A.; SINGH, L. Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum. World Journal of Microbiology and Biotechnology, v. 16, n. 3, p. 245-248, 2000. https://doi.org/10.1023/A:1008958014270

RANI, M. U.; APPAIAH, K. A. A. Production of bacterial cellulose by Gluconacetobacter hansenii UAC09 using coffee cherry husk. Journal of Food Science and Technology, v. 50, n. 4, p. 755-762, 2013. https://doi.org/10.1007/s13197-011-0401-5

ROSS, P.; MAYER, R.; BENZIMAN, A. N. D. M. Cellulose Biosynthesis and Function in Bacteria. Microbiological Reviews, v. 55, n. 1, p. 35-58, 1991. https://doi.org/10.1128/mr.55.1.35-58.1991

SANTOS, S. M.; CARBAJO, J. M.; QUINTANA, E.; IBARRA, D.; GÓMEZ, N.; LADERO, M.; EUGENIO, M. E.; VILLAR, J. C. Characterization of purified bacterial cellulose focused on its use on paper restoration. Carbohydrate Polymers, v. 116, p. 173-81, 2015. https://doi.org/10.1016/j.carbpol.2014.03.064

SCOTT, W. S.; CANNON, R. E. Alternative environmental roles for cellulose produced by Acetobacter xylinum. Applied and Environmental Microbiology, v. 55, n. 10, p. 2448-2452, 1989. https://doi.org/10.1128%2Faem.55.10.2448-2452.1989

SHAO, W.; LIU, H.; WANG, S.; WU, J.; HUANG, M.; MIN, H.; LIU, X. Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes. Carbohydrate Polymers, v. 145, p. 114-120, 2016. https://doi.org/10.1016/j.carbpol.2016.02.065

SINGH, P.; SHARMA, V. P. Integrated plastic waste management: environmental and improved health approaches. Procedia Environmental Sciences, v. 35, p. 692-700, 2016. https://doi.org/10.1016/j.proenv.2016.07.068

SKORUPA, A.; WORWĄG, M.; KOWALCZYK, M. Coffee Industry and Ways of Using By-Products as Bioadsorbents for Removal of Pollutants. Water, v. 15, e112, 2023. https://doi.org/10.3390/w15010112

TONOUCHI, N.; TSUCHIDA, T.; YOSHINAGA, F.; BEPPU, T.; HORINOUCHI, S. Characterization of the biosynthetic pathway of cellulose from glucose and fructose in Acetobacter xylinum. Bioscience, Biotechnology and Biochemistry, v. 60, n. 8, p. 1377-1379, 1996. https://doi.org/10.1271/bbb.60.1377

ULLOA, J. B.; VERRETH, J. A. J.; AMATO, S.; HUISMAN, E. A. Biological treatments affect the chemical composition of coffee pulp. Bioresource Technology, v. 89, n. 3, p. 267-274, 2003. https://doi.org/10.1016/s0960-8524(03)00070-1

VANDAMME, E. J.; DE BAETS, S.; VANBAELEN, A.; JORIS, K.; DE WULF, P. Improved production of bacterial cellulose and its application potential. Polymer Degradation and Stability, v. 59, n. 1-3, p. 93-99, 1998. https://doi.org/10.1016/S0141-3910(97)00185-7

VIANA, R. M.; SÁ, N. M. S. M.; BARROS, M. O.; BORGES, M. F.; AZEREDO, H. M. C. Nanofibrillated bacterial cellulose and pectin edible films added with fruit purees. Carbohydrate Polymers, v. 196, p. 27-32, 2018. https://doi.org/10.1016/j.carbpol.2018.05.017

WANG, Y.; JIA, J.; TIAN, Y.; SHU, X.; REN, X. -J.; GUAN, Y.; YAN, Z. -Y. Antifungal effects of clove oil microcapsule on meat products. LWT - Food Science and Technology, v. 89, p. 604-609, 2018. https://doi.org/10.1016/j.lwt.2017.11.042

WANG, Z.; DADI, L.; QIU, Y.; DAI, Y.; ZHU, S. SARSAIYA, S.; CHEN, J. Preparation and characterization of coffee hull fiber for reinforcing application in thermoplastic composites. Bioengineered, v. 10, n. 1, p. 397-408, 2019. https://doi.org/10.1080/21655979.2019.1661694

ZAHAN, K. A.; PA’E, N.; MUHAMAD, I. I. Monitoring the Effect of pH on Bacterial Cellulose Production and Acetobacter xylinum 0416 Growth in a Rotary Discs Reactor. Arabian Journal for Science and Engineering, v. 40, p. 1881-1885, 2015. https://doi.org/10.1007/s13369-015-1712-z

Descargas

Publicado

2024-09-27

Número

Sección

Bioprospecção e Biotecnologia / Bioprospecting and Biotechnology

Cómo citar

Production of bacterial cellulose from Kombucha tea and coffee husk infusion. (2024). Nativa, 12(3), 567-573. https://doi.org/10.31413/nat.v12i3.17720

Artículos más leídos del mismo autor/a