SYNERGISM AND ANTAGONISM OF THE BENEFICIAL PROPERTIES OF THE FUNGUS Inonotus obliquus AND PLANTS IN TEA DRINKS
DOI:
https://doi.org/10.31413/nat.v13i1.18720Keywords:
antioxidant activity, herbal tea, Inonotus obliquus, poly-phenolic, tanninAbstract
Five combinations of Inonotus obliquus with plant materials and individual tea ingredients were studied in vitro for the content of biologically active substances (BAS). Crushed samples of raw materials from the temperate climate, I. obliquus, Chamaenerion angustifolium, Melissa officinalis, leaves of Hippophaë rhamnoides, fruits of Pyrus malus, and from the subtropical zone, Zingiber officinale, Cymbopogon nardus, fruits of Citrus limon, Cinnamomum verum, Hibiscus sabdariffa, were extracted separately and in ternary mixtures with drinking water (100 °С, 20 minutes). The extracts were evaluated by the total content of polyphenols (TPC), tannins (TN), and antioxidant activity (AOA). Among subtropical plants, C. limon (TPC 0.77 ± 0.08 mg cm-3) and C. verum (TN 0.64 ± 0.06 µg cm-3; AOA 0.25 ± 0.03 mg cm-3) had the highest BAS content. From the raw materials of the temperate climate, H. rhamnoides was maximally enriched with BAS (TPC 0.68 ± 0.07 mg cm-3; TN 0.67 ± 0.07 µg cm-3; AOA 0.24 ± 0.01 mg cm-3). The antagonism of all biologically active substances was established by combining I. obliquus, C. limon, and H. rhamnoides. The maximum synergism was observed in the compositions of I. obliquus, C. nardus, and M. officinalis (to TPC, TN). Therefore, these combinations can reasonably be attributed to a superfood.
Keywords: antioxidant activity; medicinal herbs; polyphenolic compounds; tannins.
Sinergismo e antagonismo das propriedades úteis do fungo Inonotus obliquus e de plantas em chás
RESUMO: Cinco combinações de Inonotus obliquus com materiais vegetais, bem como ingredientes individuais de chá, foram estudadas in vitro quanto ao teor de substâncias biologicamente activas (BAS). Amostras trituradas de matérias-primas do clima temperado I. obliquus, Chamaenerion angustifolium, Melissa officinalis, folhas de Hippopha Rhamnoides, frutos de Pyrus malus e da zona subtropical Zingiber officinale, Cymbopogon nardus, frutos de Citrus limon, Cinnamomum verum, Hibiscus sabdariffa foram extraídas separadamente e em misturas ternárias de água potável (100 °С, 20 minutos). Os extratos foram avaliados pelo teor total de polifenóis (TPC), taninos (TN) e atividade antioxidante (AOA). Entre as plantas subtropicais, C. limon (TPC 0,77 ± 0,08 mg cm-3) e C. verum (TN 0,64 ± 0,06 g cm-3; AOA 0,25 ± 0,03 mg cm-3) apresentaram o maior teor de BAS. A partir das matérias-primas do clima temperado, O H. rhamnoides foi enriquecido ao máximo com BAS (TPC 0,68 ± 0,07 mg cm-3; TN 0,67 ± 0,07 g cm-3; AOA 0,24 ± 0,01 mg cm-3). O antagonismo de todas as substâncias biologicamente ativas foi estabelecido na combinação de I. obliquus, C. limon, H. rhamnoides. O sinergismo máximo foi observado nas composições de I. obliquus, C. nardus e M. officinalis (para TPC, TN). Portanto, essas combinações podem ser razoavelmente atribuídas ao superalimento.
Palavras-chave: actividade antioxidante; ervas medicinais; compostos polifenólicos; taninos.
References
АLAM, M.; AHMED, S.; ELASBALI, A. M.; ADNAN, M.; ALAM, S.; HASSAN, M. I.; PASUPULETI, V. R. Therapeutic implications of caffeic acid in cancer and neurological diseases. Frontiers in Oncology, v. 12, e860508, 2022. https://doi.org/10.3389/fonc.2022.860508
ALTUNKAYA, A.; GÖKMEN, V.; SKIBSTED, L. H. pH dependent antioxidant activity of lettuce (L. sativa) and synergism with added phenolic antioxidants. Food Chemistry, v. 190, p. 25-32, 2016. https://doi.org/10.1016/j.foodchem.2015.05.069
BASAVEGOWDA, N.; BAEK, K. H. Synergistic Antioxidant and Antibacterial Advantages of Essential Oils for Food Packaging Applications. Biomolecules, v. 11, n. 9, e1267, 2021. https://doi.org/10.3390/biom11091267
CAESAR, L. K.; CECH, N. B. Synergy and antagonism in natural product extracts: when 1 + 1 does not equal 2. Natural Product Reports, v. 36, n. 6, p. 869-888, 2019. https://doi.org/10.1039/C9NP00011A
EREMCHENKO, O. Z.; SHESTAKOV, I. E.; MOSKVINA, N. V. Soils and technogenic surface formations of urbanized territories of the Perm Kama region. Perm, Russian Federation, 2016. 252p.
GUO, Y.; BASCHIERI, A.; AMORATI, R.; VALGIMIGLI, L. Synergic antioxidant activity of γ-terpinene with phenols and polyphenols enabled by hydroperoxyl radicals. Food Chemistry, v. 345, e28468, 2021. https://doi.org/10.1016/j.foodchem.2020.128468
HINOJOSA, M. B.; CARREIRA, J. A.; GARCÍA-RUÍZ, R.; DICK, R. P. Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal-contaminated and reclaimed soils. Soil Biology and Biochemistry, v. 36, n. 10, p. 1559-1568, 2004. https://doi.org/10.1016/j.soilbio.2004.07.003
HUANG, R.; ZHANG, Y.; ZHANG, Y.; ZHANG, L.; PEI, L.; SHU, G.; YUAN, Z.; LIN, J; PENG, G.; ZHANG, W.; ZHAO, L.; SH, F.; FU, H. Evaluation of the synergetic effect of Yupingfeng san and Flos Sophorae Immaturus based on free radical scavenging capacity. Biomedicine & Pharmacotherapy, v. 128, e110265, 2020. https://doi.org/10.1016/j.biopha.2020.110265
KEITH, S. Cinnamon Update of Potential Health Benefits. Nutrition Today, v. 54, n. 1, p. 42-52, 2019. https://doi.org/10.1097/NT.0000000000000319
KICKER, E.; TITTEL, G.; SCHALLER, T.; PFERSCHY-WENZIG, E.M.; ZATLOUKAL, K.; BAUER, R. SARS-CoV-2 neutralizing activity of polyphenols in a special green tea extract preparation. Phytomedicine, v. 98, e153970, 2022. https://doi.org/10.1016/j.phymed.2022.153970
KUMAR, S.; CHAUDHURI, S.; MAITI, S. K. Soil Dehydrogenase Enzyme Activity in Natural and Mine Soil - A Review. Middle-East Journal of Scientific Research, v. 13, n. 7, p. 898-906, 2013.
MEZENOVA, O. Ya; MÖRSEL, Y. T.; VORONTSOV, S. A.; VORONTSOV, P. A. Assessment of the biopotential of wild buckthorn and prospects of its integrated use. Vestnik Mezhdunarodnoi Akademii Kholoda, v. 3, p. 44-51, 2020. https://doi.org/10.17586/1606-4313-2020-19-3-44-51
MITRAKOVA, N. V. Assessment of the biological activity and toxicity of soils and technogenic surface formations in the Perm Kama region. 259p. Dissertation [Degree of Candidate of Biological Sciences] - Perm, Russian Federation; 2018.
MOHAMMED, T. Lemon Grass (Cymbopogon L. spreng) Valuable Grass but Underutilized in Northern Nigeria. International Journal of Innovative Food, Nutrition & Sustainable Agriculture, v. 7, n. 2, p. 6-14, 2019.
OLKOVA, A. S.; ASHIKHMINA, T. Ya. Factors of obtaining representative results of bioassay of aquatic environments. Theoretical and Applied Ecology, v. 2, p. 22-30, 2021. https://doi.org/10.25750/1995-4301-2021-2-022-030
OLSZOWY-TOMCZYK, M. Synergistic, antagonistic and additive antioxidant effects in the binary mixtures. Phytochemistry Reviews, v. 19, p. 63-103, 2020. https://doi.org/10.1007/s11101-019-09658-4
PENG, H.; SHAHIDI, F. Qualitative analysis of secondary metabolites of chaga mushroom (Inonotus Obliquus): phenolics, fatty acids, and terpenoids. Journal of Food Bioactives, v. 17, p. 56-72, 2022. https://doi.org/10.31665/JFB.2022.17304
PIENIAZEK, A.; GWOZDZINSK, L. Reactive Oxygen Species and Their Involvement in Red Blood Cell Damage in Chronic Kidney Disease. Oxidative Medicine and Cellular Longevity, 6639199, 2021. https://doi.org/10.1155/2021/6639199
QURESHI, A. A. S.; BARABDE, G. Comparison between the Antioxidant Potential of Leaves and Seed extracts of Nigella sativa (Kalonji), Trachyspermum ammi (Ajwain), Trigonella foenum graecum (Fenugreek) and Assessment of Synergistic effect of Seed extracts by DPPH Assay. International Journal of All Research Education and Scientific Methods, v. 9, n. 3, p. 38-41, 2021.
RODRÍGUEZ-ROMERO, M.; GALLARDO, A.; PULIDO, F. Geographical and within-population variation of constitutive chemical defences in a Mediterranean oak (Quercus ilex). Forest systems, v. 29, n. 2, е011, p. 97-107, 2020. https://doi.org/10.5424/fs/2020292-16943
SHARMA, K.; KUMAR, V.; KAUR, J.; TANWAR, B.; GOYAL, A.; SHARMA, R.; GAT, Y.; KUMAR, A. Health effects, sources, utilization and safety of tannins: a critical review. Toxin Reviews, v. 40, n. 3, p. 1-13, 2019. https://doi.org/10.1080/15569543.2019.1662813
SMERIGLIO, A.; BARRECA, D.; BELLOCCO, E.; TROMBETTA, D. Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. British Journal of Pharmacology, v. 174, n. 11, p. 1244-1262, 2016. https://doi.org/10.1111/bph.13630
STANISŁAW, B.; EBIELIŃSKA, J.; OLESZCZUK, P.; Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons. Geoderma, v. 118, n. 3-4, p. 221-232, 2004. https://doi.org/10.1016/S0016-7061(03)00205-2
TR EAEU 044/2017 Technical Regulations of the Eurasian Economic Union “On the safety of packaged drinking water, including natural mineral water”.
TRINEEVA, O. V. Methods for determining the antioxidant activity of objects of plant and synthetic origin in pharmacy (review). Analiticheskie Metodiki i Metody Kontrolya, v. 4, p. 180-195, 2017.
VAOU, N.; STAVROPOULOU, E.; VOIDAROU, C.; TSIGALOU, C.; BEZIRTZOGLOU, E. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms, v. 9, n. 10, e2041, 2021. https://doi.org/10.3390/microorganisms9102041
Downloads
Published
Issue
Section
How to Cite
License
Copyright (c) 2025 Nativa

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright for articles published in this journal are the authors, with first publication rights granted to the journal. The journal shows open access, and articles are free to use, with proper attribution, in educational and non-commercial.
The articles published in this journal may be reproduced in part or used as a reference by other authors, provided that the source is quoted.

