LONG-TERM TOXICITY OF LANTHANUM TO AMPHIPODS Hyalella azteca
DOI:
https://doi.org/10.31413/nat.v13i4.20039Palavras-chave:
bioassay, survival, feeding behaviorResumo
The impact of rare-earth elements (REEs) on living organisms is still unexplored. This study aimed to determine the toxicological properties of lanthanum (La) under prolonged exposure to the benthic amphipod Hyalella azteca, Saussure. The artificially created environmental condition models were water with La spiking in concentrations ranging from 0.16 to 160 µmol L-1 (mass concentrations of 0.0006 - 0.6 mg L-1) as La₂(SO₄)₃·8H₂O. The observation period lasted 40 days. Based on mortality rates, La concentrations of 160 and 16 µmol L-1 (22.4 and 2.24 mg L-1) were toxic in the acute experiment. In contrast, concentrations of 1.6, 0.8, and 0.16 µmol L-1 (0.224, 0.112, 0.022 mg L-1) exerted delayed chronic toxic effects on H. azteca. The linear dimensions and body mass of the amphipods increased in response to La concentrations of 0.16 and 0.8 µmol L-1, but further increases of metal concentrations reduced the parameters compared to lower concentrations. In all test groups except 0.16 µmol L-1, a significant increase in food consumption (biomass of Acer platanoides L.) was observed compared to the control. This effect is attributed to the compensation of toxic stress through increased feeding activity. H. azteca exhibits adverse effects of La exposure. Mortality and morphological parameters serve as the most sensitive test endpoints for these amphipods.
Keywords: bioassay; survival; feeding behavior; chronic toxicity.
Toxicidade do lantânio para anfípodes Hyalella azteca com exposição prolongada
RESUMO: Muitas questões sobre os efeitos dos elementos de terras raras sobre organismos vivos ainda não foram estudadas. O objetivo deste trabalho foi determinar as propriedades toxicológicas do lantânio em exposição prolongada aos anfípodes bentônicos Hyalella azteca Saussure. Os meios-modelo foram água com aditivo La na faixa de concentração de 0,16 - 160 µmol L-1 (concentrações em massa de 0,0006 - 0,6 mg L-1) na forma de La2(SO4)3·8H2O. A duração das observações foi de 40 dias. Em termos de mortalidade, as concentrações de La de 160 e 16 µmol L-1 (22,4 e 2,24 mg L-1) foram tóxicas no experimento agudo, e as concentrações de La de 1,6, 0,8 e 0,16 µmol L-1 (0,224, 0,112 e 0,022 mg L-1) tiveram efeito tóxico crônico tardio na H. azteca. O tamanho linear e o peso dos crustáceos aumentaram em resposta às concentrações de La de 0,16 e 0,8 µmol L-1, o que elevou ainda mais a concentração do metal em comparação com concentrações mais baixas. Em todas as variantes, exceto 0,16 µmol L-1, houve um aumento significativo no consumo de alimentos (biomassa de Acer platanoides L.) em comparação com o controle, devido à compensação do estresse tóxico pela nutrição. Assim, o H. azteca experimenta os efeitos negativos do La. A morte e os parâmetros morfológicos são as funções de teste mais sensíveis em esses crustáceos.
Palavras-chave: bioensaio; sobrevivência; comportamento alimentar; toxicidade crónica.
Referências
AMORIM, A. M.; SODRÉ, F. F.; ROUSSEAU, T. C. C.; MAIA, P. D. Assessing rare-earth elements and anthropogenic gadolinium in water samples from an urban artificial lake and its tributaries in the Brazilian Federal District. Microchemical Journal, v. 148, p. 27-34, 2019. https://doi.org/10.1016/j.microc.2019.04.055
ATINKPAHOUN, C. N. H.; PONS, M. N.; LOUIS, P.; LECLERC, J. P.; SOCLO, H. H. Rare earth elements (REE) in the urban wastewater of Cotonou (Benin, West Africa). Chemosphere, v. 251, e126398, 2020. https://doi.org/10.1016/j.chemosphere.2020.126398
BLINOVA, I.; LUKJANOVA, A.; MUNA, M.; VIJA, H.; KAHRU, A. Evaluation of the potential hazard of lanthanides to freshwater microcrustacean. Science of the Total Environment, v. 642, p. 1100-1107, 2018. https://doi.org/10.1016/j.scitotenv.2018.06.155
BORGMANN, U.; COUILLARD, Y.; DOYLE, P.; DIXON, D. G. Toxicity of sixty-three metals and metalloids to Hyalella azteca at two levels of water hardness. Environmental Toxicology and Chemistry, v. 24, p. 641-652, 2005. https://doi.org/10.1897/04-177r.1
FIGUEIREDO, C.; GRILO, T. F.; OLIVEIRA, R.; FERREIRA, I. J.; GIL, F.; LOPES, C.; BRITO, P.; RÉ, P.; CAETANO, M.; DINIZ, M.; RAIMUNDO, J. Single and combined ecotoxicological effects of ocean warming, acidification and lanthanum exposure on the surf clam (Spisula solida). Chemosphere, v. 302, e134850, 2022. https://doi.org/10.1016/chemosphere. 2022.134850
FILENKO, O. F.; TEREXOVA, V. A. Ecological purpose of biotesting: informative and versatile. Izdatel`stvo GEOS, S. 232-238, 2016. EDN WYAZSF. (in Russian).
GAD, S. C. (Ed). Animal Models in Toxicology. 3rd Ed. Boca Raton: CRC Press, 2016. 1152p. https://doi.org/10.1201/b187505
HERRMANN, H.; NOLDE, J.; BERGER, S.; HEISE, S. Aquatic ecotoxicity of lanthanum - A review and an attempt to derive water and sediment quality criteria. Ecotoxicology and Environmental Safety, v. 124, p. 213-238, 2016. https://doi.org/10.1016/j.ecoenv.2015.09.033
INGERSOLL, C. G.; BESSER, J. M.; BRUMBAUGH, W. G.; IVEY, C.; KEMBLE, N.; KUNZ, J. L.; MAY, T. W.; WANG, N.; MACDONALD, D. D.; SMORONG, D. E. Sediment chemistry, toxicity, and bioaccumulation data report for the US Environmental Protection Agency. Department of the Interior sampling of metal-contaminated sediment in the Tri-state Mining District in Missouri, Oklahoma, and Kansas. Final report CERC-8335-FY07-20-12. 2008. U.S. Geological Survey, Columbia, MO, USA, and MacDonald Environmental Sciences, Nanaimo, BC. Canada.
INGERSOLL, C. G.; NELSON, M. K. Testing sediment toxicity with Hyalella azteca (Amphipoda) and Chironomus riparius (Diptera). In: LANDIS, W. G.; VAN DER SCHALIE, W. H. (Eds.). Aquatic Toxicology and Risk Assessment. 30 Ed. Philadelphia: ASTM, v. 13, p. 93-109, 1990. https://doi.org/10.1520/STP20101S
JADHAV, S. B.; MALAVEKAR, D. B.; MOHITE, R. A.; SHAIKH, S. B.; KADAM, K. V.; PAWASKAR, P. N.; KIM, J. H.; LEE, N.-E. A critical review of lanthanum and lanthanum-based materials: synthesis, applications, and challenges. Rare Metals, v. 44, p. 5201-5232, 2025. https://doi.org/10.1007/S12598-024-03204-8
JOHNSON, I. Criteria-based procedure for selecting test methods for effluent testing and its application to Toxkit microbiotests. In: PERSOONE, G.; JANSSEN, C.; COEN, W. M. de. (Eds). New microbiotests for routine toxicity screening and biomonitoring. Boston, MA: Springer, 2000. p. 73-94. https://doi.org/10.1007/978-1-4615-4289-6_7
KHAN, A. M.; YUSOFF, I.; BAKAR, N. K. A.; BAKAR, A. F. A.; ALIAS, Y. Assessing anthropogenic levels, speciation, and potential mobility of rare earth elements (REEs) in ex-tin mining area. Environmental Science and Pollution Research, v. 23, n. 24, p. 25039-25055, 2016. https://doi.org/10.1007/s11356-016-7641-x
KLAVER, G.; VERHEUL, M.; BAKKER, I.; PETELET-GIRAUD, E.; NÉGREL, P. Anthropogenic Rare Earth Element in rivers: Gadolinium and lanthanum. Partitioning between the dissolved and particulate phases in the Rhine River and spatial propagation through the Rhine-Meuse Delta (the Netherlands). Applied Geochemistry, v. 47, p. 186-197, 2014. https://doi.org/10.1016/j.apgeochem.2014.05.020
LIU, W. S.; GUO, M.-N.; LIU, C.; YUAN, M.; CHEN, X.-T.; HUOT, H.; ZHAO, C.-M.; TANG, Y.; MOREL, J. L.; QIU, R.-L. Water, sediment and agricultural soil contamination from an ion adsorption rare earth mining area. Chemosphere, v. 216, p. 75-83, 2019. https://doi.org/10.1016/j.chemosphere.2018.10.109
LOZHKINA, R. A.; TOMILINA, I. I. The effect of lanthanum on the biological parameters of the branchial crustacean Ceriodaphnia affinis in a chronic experiment. Toksikologicheskij Vestnik, no. 1(136), pp. 42–46, 2016. https://doi.org/10.36946/0869-7922-2016-1-42-42 (in Russian).
LU, C. The Effects of Water Chemistry and Organism Source on Dysprosium Toxicity to Hyalella Azteca. 126f. Thesis [Master's of Science in Biology] - University of Waterloo, Ontario, Canada, 2016.
NELSON, M. K.; BRUNSON, E. L. Postembryonic growth and development of Hyalella azteca in laboratory cultures and contaminated sediments. Chemosphere, v. 31, n. 4, p. 3129-3140, 1995. https://doi.org/10.1016/0045-6535(95)00171-4
NORWOOD, W. P.; BORGMANN, U.; DIXON, D. G. Chronic toxicity of arsenic, cobalt, chromium and manganese to Hyalella azteca in relation to exposure and bioaccumulation. Environmental Pollution, v. 147, n. 1, p. 262-272, 2007. https://doi.org/10.1016/j.envpol.2006.07.017
ODUM, Y. Ecology. Vol. 2. Mir, Moscow: Per. s angl. M., 1986. 209p.
OLKOVA, A. S.; KANTOR, G. Y.; KUTYAVINA, T. I.; ASHIKHMINA, T. Y. The importance of maintenance conditions of Daphnia magna Straus as a test organism for ecotoxicological analysis. Environmental Toxicology and Chemistry, v. 37, n. 2, p. 376-384, 2018. https://doi.org/10.1002/etc.3956
OLKOVA, A. S.; MAHANOVA, E. V. Choice of bioassays for ecological studies of waters polluted with mineral forms of nitrogen. Voda i Ekologiya: problem i resheniya, v. 4, n. 76, p. 70-81, 2018. (In Russian)
RY`BINA, G. E.; MIXAJLOVA, L. V.; TOMILINA, I. I. Methodology for determining the toxicity of aquatic sediments, soils, sewage sludge and industrial sediments by biotesting using amphipods Hyalella azteca Saussure. 1st ed. Russia: Tyumen, 2019. 42p. (in Russian).
SADCHIKOV, A. P.; OSTROUMOV, S. A. Issues of the study of detritus in aquatic systems. Russian Journal of General Chemistry, v. 87, p. 3244-3249, 2017. https://doi.org/10.1134/S1070363217130199
SANPIN 2.1.4.1074-01. Drinking water. Hygienic requirements for water quality of centralized drinking water supply systems. Quality control. Russian Federation: Minister of Health, 2010. 44p. Available at: https://www.mast.is/static/files/library/Regluger%C3%B0ir/Russland/SanPin%202_1_4_1074-01_ForWater.pdf. (in Russian)
SOKAL, R. R.; ROHLF, F. J. Biometry: the principles and practice of statistics in biological research. New York: W. H. Freeman and Co., 1995. 887p.
STRAKHOVENKO, V.; BELKINA, N.; SUBETTO, D.; RYBALKO, A.; EFREMENKO, N.; KULIK, N.; POTAKHIN, M.; ZOBKOV, M.; OVDINA, E.; LUDIKOVA, A. Distribution of rare earth elements and yttrium in water, suspended matter and bottom sediments in Lake Onego: evidence of the watershed transformation in the Late Pleistocene. Quaternary International, v. 644, p. 120-133, 2023. https://doi.org/10.1016/j.quaint.2021.07.011
SYSOLYATINA, M. A.; OLKOVA, A. S. Potentiation of the toxic effect of copper in the presence of lanthanum in biotests on Daphnia magna Straus (Cladocera, Crustacea)] (Cladocera, Crustacea). Povolzhskij Ekologicheskij Zhurnal, no. 4, p. 483-490, 2022. https://doi.org/10.35885/1684-7318-2022-4-483-490 (in Russian).
TAO, Y.; SHEN, L.; FENG, C.; YANG, R.; QU, J.; JU, H.; ZHANG, Y. Distribution of rare earth elements (REEs) and their roles in plant growth: a review. Environmental Pollution, v. 298, e118540, 2022. https://doi.org/10.1016/j.envpol.2021.118540
WANG, F.; GOULET, R. R.; CHAPMAN, P. M. Testing sediment biological effects with the freshwater amphipod Hyalella azteca: the gap between laboratory and nature. Chemosphere, v. 57, n. 11, p. 1713-1724, 2004. https://doi.org/10.1016/j.chemosphere.2004.07.050
WANG, Z.; SHU, J. H.; WANG, Z. R.; QIN, X. H.; WANG, S. F. Geochemical behavior and fractionation characteristics of rare earth elements (REEs) in riverine water profiles and sentinel clam (Corbicula fluminea) across watershed scales: insights for REEs monitoring. Science of the Total Environment, v. 803, e150090, 2022. https://doi.org/10.1016/j.scitotenv.2021.150090
WANG, Z.; YU, S.; ZHANG, L.; LIU, R.; DENG, Y.; NIE, Y.; ZHOU, Z.; DIAO, J. Effects of simazine herbicide on a plantarthropod-lizard tritrophic community in territorial indoor microcosms: Beyond the toxicity. Science of the Total Environment, v. 781, e146723, 2021. https://doi.org/10.1016/j.scitotenv.2021.146723
ZHENG, B.; ZHANG, Y. W.; GENG, Y.; WEI, W.; GE, Z.; GAO, Z. Investigating lanthanum flows and stocks in China: a dynamic material flow analysis. Journal of Cleaner Production, v. 368, e133204, 2022. https://doi.org/10.1016/j.jclepro.2022.133204
ZHI, Y.; ZHANG, C.; HJORTH, R.; BAUN, A.; DUCKWORTH, O. W.; CALL, D. F.; KNAPPE, D. R. U.; JONES, J. L.; GRIEGER, K. Emerging lanthanum (III)-containing materials for phosphate removal from water: A review towards future developments. Environment International, v. 145, e106115, 2020. https://doi.org/10.1016/j.envint.2020.106115
Downloads
Publicado
Edição
Seção
Como Citar
Licença
Copyright (c) 2025 Nativa

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Direitos Autorais para artigos publicados nesta revista são do autor, com direitos de primeira publicação para a revista. Em virtude de a aparecerem nesta revista de acesso público, os artigos são de uso gratuito, com atribuições próprias, em aplicações educacionais e não-comerciais.
A artigos publicados nessa revista, podem ser reproduzidos parcialmente ou utilizados como referência por outros autores, desde que seja cita a fonte, ou seja, a Revista Nativa.
Copyright for articles published in this journal are the authors, with first publication rights granted to the journal. The journal shows open access, and articles are free to use, with proper attribution, in educational and non-commercial.
The articles published in this journal may be reproduced in part or used as a reference by other authors, provided that the source is quoted.


