CONFIDENCE ANALYSIS AND CALIBRATION OF A FC-28 SOIL MOISTURE SENSOR MOUNTED ON A MICROCONTROLLER PLATFORM

Autores

DOI:

10.31413/nativa.v9i1.9152

Resumo

Nowadays, the global water crisis poses a great challenge to humanity and a risk to be managed by future generations. In order to use this resource consciously, it is known in the area of agricultural irrigation the need to evaluate the amount of water to be used. Among the soil moisture content determination methods, sensors, coupled to a programmable logic controller, emerge as an alternative to conventional laboratory methods, making the procedure faster and less labor intensive. In this sense, the present work aimed to evaluate the reliability and precision of a low-cost sensor to determine soil moisture content. It was concluded that the evaluated sensors did not present a known precision to estimate the level of soil moisture content. A FC-28 sensor coupled with a Arduino platform was used with three different soils (texture: low, medium and heavy), moisture ranging from 15 to 50%. The results indicated that soil texture influenced the readings, even at the same humidity. In addition, the evaluated sensors did not present replicability nor accuracy for less them 10% moisture differences. Therefore, there is need to calibrate each sensor individually.

Keywords: arduino; irrigation; embedded systems.

 

Análise de confiabilidade e calibração do sensor de umidade do solo FC-28 montado em plataforma microcontroladora

 

RESUMO: Atualmente, a crise hídrica mundial representa um grande desafio à humanidade e um risco a ser gerenciado pelas gerações futuras. De forma a utilizar este recurso de forma consciente, estudos na área de irrigação agrícola apontam a necessidade de se estimar com precisão a quantidade de água a ser usada. Dentre os métodos de determinação da umidade do solo, os sensores, acoplados a um controlador lógico programável, surgem como uma alternativa aos métodos convencionais de laboratório, tornando o procedimento mais rápido e menos trabalhoso. Neste sentido, o presente trabalho avaliou a confiabilidade e precisão de um sensor de baixo custo para determinação da umidade do solo. Um sensor FC-28 associado à uma plataforma Arduino foi usado em três tipos diferentes de solos (texturas: leve, média e pesada), umidades variando de 15 a 50%. Concluiu-se que os sensores avaliados não apresentaram boa precisão para estimar o grau de umidade dos solos. A textura do solo influenciou diretamente as leituras dos sensores, mesmo para a mesma umidade. Além de não apresentaram replicabilidade nem precisão para diferenças menores de 15% nos valores de umidades. Portanto, é necessário calibrar cada sensor individualmente.

Palavras-chave: arduino; irrigação; plataformas embarcadas.

Biografia do Autor

Leticia Cardoso Madureira Tavares, Departamento de Engenharia Agrícola, Universidade Federal de Viçosa, Viçosa, MG, Brasil.

Departamento de Engenharia Agrícola / Tratamento de resíduos

Guilherme de Moura Araújo, Department of Biological and Agricultural Engineering, University of California, Davis, CA, United States.

Department of Biological  and Agricultural Engineering / Projeto de máquinas agrícolas

Referências

EMBRAPA_Empresa Brasileira de Pesquisa Agropecuária. Centro Nacional de Pesquisa de Solo. Manual de métodos de análise de solo. 2 ed. Rio de Janeiro. Embrapa Solos, 1997. 212p.

EUSTAQUIO, J. F. L. L.; SANTANA, G. M.; SILVA, E. L. L.; ALEMÃO, P.; VASCONCELOS, L. C. L.; SILVA, M. E. O.; PONTES, P. M.; SILVA, T. F. L. Construção e desenvolvimento de um sensor de umidade de solos utilizando Arduino. Jaboatão/PE: Fundação Bradesco, 2016. 4p. Disponível em: http://sistemaolimpo.org/midias/uploads/c85c65e0c68fcaf7e6ccdfbbd7e847e5.pdf. Acesso em: 25 fev. 2021.

EVETT, S. R.; TOLK, J. A.; HOWELL, T. A. Soil profile water content determination: Sensor accuracy, axial response, calibration, temperature dependence, and precision. Vadose Zone Journal, v. 5, n. 3, p. 894-907, 2006. DOI: 10.2136/VZJ2005.0149

GADDAM, A.; AL-HROOBY, M.; ESMAEL, W. F. Designing a wireless sensors network for monitoring and predicting droughts. In: International Conference on Sensing Technology, 8th. Proceedings... Liverpool, U.K. 2014.

GHI_ Global Harvest Initiative. Global Agricultural Productivity Report. 2017. 72p.

HINKLE, D. E.; WIERSMA, W.; JURS, S. G. Applied Statistics for the Behavioral Sciences. 5th ed. Boston: Houghton Mifflin, 2003. 792p.

JINDAL, H.; SAXENA, S.; KASANA, S. S. Sewage water quality monitoring framework using multi-parametric sensors. Wireless Personal Communications, v. 97, n. 1, p. 881-913, 2017. DOI: https://doi.org/10.1007/s11277-017-4542-3

KLAR, A. E. Água no sistema. 2 ed. São Paulo: Nobel, 1988. 408p.

KOLAPKAR, M. M.; KHIRADE, P. W.; SAYYAD, S. B. Design and development of embedded system for measurement of humidity, soil moisture and temperature in polyhouse using 89e516rd microcontroller. International Journal of Advanced Agricultural Science and Technology, v. 5, n. 1, p. 96-110, 2016.

KUTNER, M. H.; NACHTSHEIM, C.J.; NETER, J.; LI, W. Applied linear statistical models. 5 ed. New York, NY: McGraw-Hill Higher Education, 2004. 1424p.

LIBARDI, P. L. Dinâmica da água no Solo. Piracicaba: Ed. do Autor, 1999. 497p.

LOGSDON, S. D. CS616 Calibration: Field versus Laboratory. Soil Science Society of America Journal. v. 73, n. 1, p. 1-6, 2009. DOI: https://doi.org/10.2136/sssaj2008.0146

MCROBERTS, M. Beginning Arduino. 1 ed. New York, NY: Apress Inc., 2010. 475p.

MITTELBACH, H.; CASINI, F.; LEHNER, I.; TEULING, A. J.; SENEVIRATNE, S. I. Soil moisture monitoring for climate research: evaluation of a low-cost sensor in the framework of the swiss soil moisture experiment (SwissSMEX) campaign. Journal of Geophysical Research -Atmosphere, v. 116, n. 11, D05111, 2011. DOI: https://doi.org/10.1029/2010JD014907

MOWAD, M. A. E. L.; FATHY, A.; HAFEZ, A. Smart home automated control system using android application and microcontroller. International Journal of Scientific & Engineering Research, v. 5, n. 5, p. 935-939, 2014.

PAYERO, J. O.; NAFCHI, A. M.; DAVIS, R.; KHALILIAN, A. An Arduino-Based Wireless Sensor Network for Soil Moisture Monitoring Using Decagon EC-5 Sensors. Open Journal of Soil Science, v. 7, n. 10, p. 288, 2017. DOI: 10.4236/ojss.2017.710021

POUSO, M. T. P. Sistema de automação e controle de um sistema de irrigação. Brasília: UniCEUB, 2012. 85p.

RATHORE, J.; SINGH, J. Review on Wireless Sensor System using Zigbee for Greenhouse. International Journal of Engineering and Management Research, v. 5, n. 6, p. 73-76, 2015.

ROCCARO, P.; VERLICCHI, P. Wastewater and reuse. Current Opinion in Environmental Science & Health, v. 2, p. 61-63, 2018. DOI: 10.1016/j.coesh.2018.03.008

RÜDIGER, C.; WESTERN, A. W.; WALKER, J. P.; SMITH, A. B.; KALMA, J. D.; WILLGOOSE, G. R. Towards a general equation for frequency domain reflectometers. Journal of Hydrology, v. 383, n. 3-4, p. 319-329, 2010. DOI: https://doi.org/10.1016/j.jhydrol.2009.12.046

SHARMA, H.; SHUKLA, M. K.; BOSLAND, P. W.; STEINER, R. Soil moisture sensor calibration, actual evapotranspiration, and crop coefficients for drip irrigated greenhouse chile peppers. Agricultural Water Management, v. 179, p. 81-91, 2017. DOI: https://doi.org/10.1016/j.agwat.2016.07.001

VANI, P. D.; RAO, K. Measurement and monitoring of soil moisture using cloud IoT and android system. Indian Journal of Science and Technology, v. 9, n. 31, p. 1-9, 2016. DOI: 10.17485/ijst/2016/v9i31/95340

VERNANDHES, W.; SALAHUDDIN, N. S.; KOWANDA, A.; SARI, S. P. Smart aquaponic with monitoring and control system based on iot. In: Informatics and Computing (ICIC) and Second International Conference on IEEE. Proceedings… p. 1-6, 2017. Available in: https://ieeexplore.ieee.org/document/8280590

WILL, B.; ROLFES, I. Comparative study of moisture measurements by time domain transmissometry. In: SENSORS, IEEE. Proceedings… Baltimore, MD, USA, 2013. Available in: https://ieeexplore.ieee.org/abstract/document/6688529

Downloads

Publicado

2021-02-25

Edição

Seção

Engenharia Agrícola / Agricultural Engineering