SEGMENTATION OF RGB IMAGES USING DIFFERENT VEGETATION INDICES AND THRESHOLDING METHODS

Autores

  • Abdon Francisco Aureliano Netto abdonfan@hotmail.com
    Universidade Federal de São João del Rei
  • Rodrigo Nogueira Martins rodrigo.n.martins@ufv.br
    Instituto Federal do Norte de Minas Gerais
  • Guilherme Silverio Aquino de Souza guilhermesas.eng@gmail.com
    Universidade Federal de Viçosa
  • Guilherme de Moura Araújo guilhermedemouraa@gmail.com
    Universidade Federal de Viçosa
  • Samira Luns Hatum de Almeida samiraluns@hotmail.com
    Universidade Federal de Viçosa
  • Vinicius Agnolette Capelini vinicius91ac@hotmail.com
    Universidade Federal de Viçosa

DOI:

10.31413/nativa.v6i4.5405

Resumo

SEGMENTAÇÃO DE IMAGENS RGB USANDO DIFERENTES ÍNDICES DE VEGETAÇÃO E MÉTODOS DE LIMIARIZAÇÃO

 

A segmentação é um dos aspectos fundamentais envolvidos no processamento de imagens, que geralmente consiste na discriminação de objetos de interesse e fundo da imagem. O presente estudo objetivou avaliar o efeito de diferentes índices de vegetação (IV) (ExG, ExGR e NDI) no desempenho de três métodos de limiarização (Otsu, Ridler e Triângulo) em termos de precisão e tempo de processamento na segmentação de imagens. Para tal, foram utilizadas 30 imagens advindas de área cultivada com milho sob diferentes tipos de cobertura do solo (plantio convencional, casca de café e palhada). O processamento das imagens foi realizado através de algoritmos desenvolvidos com base nos IV e métodos de limiarização. A acurácia das imagens resultantes foi avaliada com a verdade de campo obtida pelo algoritmo K-means. Os resultados demonstraram desempenho superior para o método do triângulo quando precedido dos índices NDI (90,7%) e ExGR (90,23%) e dos métodos de Otsu e Ridler quando precedidos pelo NDI com 89,06% e 89,03% de acurácia, respectivamente. O tempo de processamento foi estatisticamente igual entre os métodos avaliados. De modo geral, a abordagem combinada de IV e métodos de limiarização foram capazes de separar com alta acurácia a cultura do milho do objeto de fundo.

Palavras-chave: processamento de imagens, imagens digitais, método do triângulo.

ABSTRACT:

Image Segmentation is one of the fundamental aspects involved in image processing, which generally consists of discriminating objects of interest from its background. Thus, the objective of this study was to evaluate the effect of vegetation indices (VI) (ExG, ExGR, and NDI) on the performance of three automated thresholding methods (Otsu, Ridler, and Triangle) in terms of accuracy and processing time on image segmentation. A set of 30 images from an area cultivated with maize under different types of soil cover (conventional planting, no-tillage with coffee husk, and straw residue) were selected and processed. The images were processed through algorithms developed based on VI and thresholding methods. Then, the accuracy of the resulting images was evaluated through the ground truth image obtained by the K-means algorithm. The results demonstrated superior performance for the triangle method when preceded by the NDI (90.7%) and ExGR (90.23%) indices and the Otsu and Ridler methods when preceded by the NDI with 89.06% and 89.03% accuracy, respectively. The processing time was statistically equal among the evaluated methods. In general, the combined approach of VI and thresholding based methods were capable of separating with high accuracy the maize crop from the background.

Keywords: image processing, digital images, triangle method.

Biografia do Autor

Abdon Francisco Aureliano Netto, Universidade Federal de São João del Rei

Programa de Pós-Graduação em Engenharia Elétrica – Universidade Federal de São João del Rei, São João del Rei, Minas Gerais, Brasil

Rodrigo Nogueira Martins, Instituto Federal do Norte de Minas Gerais

Programa de Pós-Graduação em Engenharia Agrícola – Máquinas e Mecanização Agrícola, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil

Guilherme Silverio Aquino de Souza, Universidade Federal de Viçosa

Programa de Pós-Graduação em Ciência Florestal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil

Guilherme de Moura Araújo, Universidade Federal de Viçosa

Programa de Pós-Graduação em Engenharia Agrícola – Máquinas e Mecanização Agrícola, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil

Samira Luns Hatum de Almeida, Universidade Federal de Viçosa

Programa de Pós-Graduação em Engenharia Agrícola – Máquinas e Mecanização Agrícola, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil

Vinicius Agnolette Capelini, Universidade Federal de Viçosa

Programa de Pós-Graduação em Engenharia Agrícola – Máquinas e Mecanização Agrícola, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil

Referências

ABDULLAH, S. L. S.; JAMIL, N. Segmentation of natural images using an improved thresholding-based technique. Procedia Engineering, v. 41, p. 938-944, 2012. DOI: https://doi.org/10.1016/j.proeng.2012.07.266

AL-AMRI, S. S.; KALYANKAR, N. V.; KHAMITKAR, S. D. Image segmentation by using threshold techniques. Journal of Computing, v. 2, n. 5, p. 83-86. 2010.

BAI, X. D.; CAO, Z. G.; WANG, Y.; YU, Z. H.; ZHANG, X. F.; LI, C. N. Crop segmentation from images by morphology modeling in the CIE L* a* b* color space. Computers and electronics in agriculture, v. 99, p. 21-34. 2013. DOI: https://doi.org/10.1016/j.compag.2013.08.022

BHARGAVI, K.; JYOTHI, S. A survey on threshold based segmentation technique in image processing. International Journal of Innovative Research and Development, v. 3, n. 12, p. 234-239. 2014.

CLAUSI, D. A.; DENG, H. Design-based texture feature fusion using Gabor filters and co-occurrence probabilities. IEEE Transactions on Image Processing. v. 14, n. 7, p. 925-936. 2005. DOI: https://doi.org/10.1109/TIP.2005.849319

COY, A.; RANKINE, D.; TAYLOR, M.; NIELSEN, D. C.; COHEN, J. Increasing the accuracy and automation of fractional vegetation cover estimation from digital photographs. Remote Sensing, v. 8, n. 7, p. 474-488, 2016. DOI: http://dx.doi.org/10.3390/rs8070474

DASS, R.; PRIYANKA. ; DEVI, S. “Image Segmentation Techniques”. International Journal of Electronics & Communication Technology, v. 3, n. 1, p. 1-5, 2012.

GÉE, C.; BOSSU, J.; JONES, G.; TRUCHETET, F. Crop/weed discrimination in perspective agronomic images. Computers and Electronics in Agriculture. v. 60, n. 1, p. 49-59, 2008 DOI: https://doi.org/10.1016/j.compag.2007.06.003

GROOTJANS, W.; USMANIJ, E. A.; OYEN, W. J.; VAN DER HEIJDEN, E. H.; VISSER, E. P.; VISVIKIS, D.; HATT, M.; BUSSINK, J.; DE GEUS-OEI, L. F. Performance of automatic image segmentation algorithms for calculating total lesion glycolysis for early response monitoring in non-small cell lung cancer patients during concomitant chemoradiotherapy. Radiotherapy and Oncology. v. 119, n. 3, p. 473-479, 2016. DOI http://dx.doi.org/10.1016/j.radonc.2016.04.039

LU, Y.; LU, R. Histogram-based automatic thresholding for bruise detection of apples by structured-illumination reflectance imaging. Biosystems Engineering, v. 160, p. 30-41, 2017. DOI: https://doi.org/10.1016/j.biosystemseng.2017.05.005

MEYER, G. E.; NETO, J. A. C. Verification of color vegetation indices for automated crop imaging applications. Computers and Electronics in Agriculture. v. 63, n. 2, p. 282–293, 2008. DOI:

NAIDU, M .S. R.; KUMAR, P. R.; CHIRANJEEVI, K. Shannon and Fuzzy entropy based evolutionary image thresholding for image segmentation. Alexandria Engineering Journal, v. 56, n. 3, p. 1-13, 2017. DOI: https://doi.org/10.1016/j.aej.2017.05.024

OTSU, N. A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, v. 9, n. 1, p. 62-66, 1979. DOI: https://doi.org/10.1109/TSMC.1979.4310076

RAJU, P. D. R.; NEELIMA, G. Image segmentation by using histogram thresholding. International Journal of Computer Science Engineering and Technology, v. 2, n. 1, pp. 776-779, 2012.

SEZGIN, M.; SANKUR, B. Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic imaging, v. 13, n. 1, p. 146-168, 2004. DOI: http://dx.doi.org/10.1117/1.1631315

SOJODISHIJANI, O.; ROSTAMI, V.; RAMLI, A. R. A video-rate color image segmentation using adaptive and statistical membership function. Scientific Research and Essays, v. 5, n. 24, p. 3914-3925, 2010.

TEIXIDÓ, M.; FONT, D.; PALLEJÀ, T.; TRESANCHEZ, M.; NOGUÉS, M.; PALACÍN, J. Definition of linear color models in the RGB vector color space to detect red peaches in orchard images taken under natural illumination. Sensors, v. 12, n. 6, p. 7701-7718, 2012. DOI: https://dx.doi.org/10.3390%2Fs120607701

TOCHON, G.; FERET, J. B.; VALERO, S.; MARTIN, R. E.; KNAPP, D. E.; SALEMBIER, P.; CHANUSSOT, J.; ASNER, G. P. On the use of binary partition trees for the tree crown segmentation of tropical rainforest hyperspectral images. Remote sensing of environment, v. 159, p. 318-331, 2015. DOI: https://doi.org/10.1016/j.rse.2014.12.020

WOEBBECKE, D. M.; MEYER, G. E.; VON BARGEN, K.; MORTENSEN, D. A. Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the ASAE, v. 38, n. 1, p. 259-269, 1995. DOI: http://dx.doi.org/10.13031/2013.27838

WOEBBECKE, D. M.; MEYER, G. E.; VON BARGEN, K.; MORTENSEN, D. A. Plant species identification, size, and enumeration using machine vision techniques on near-binary images. Optics in Agriculture and Forestry, v. 1836, p. 208-219, 1992. DOI: http://dx.doi.org/10.1117/12.144030

YANG, W.; WANG, S.; ZHAO, X.; ZHANG, J.; FENG, J. Greenness identification based on HSV decision tree. Information Processing in Agriculture, v. 2, n. 3, p. 149-160, 2015. DOI: https://doi.org/10.1016/j.inpa.2015.07.003

ZACK, G. W.; ROGERS, W. E.; LATT, S. A. Automatic measurement of sister chromatid exchange frequency. Journal of Histochemistry & Cytochemistry, v. 25, n. 7, p. 741-753, 1977. DOI: https://doi.org/10.1177/25.7.70454

Downloads

Publicado

2018-07-18

Como Citar

Aureliano Netto, A. F., Nogueira Martins, R., Aquino de Souza, G. S., Araújo, G. de M., Hatum de Almeida, S. L., & Agnolette Capelini, V. (2018). SEGMENTATION OF RGB IMAGES USING DIFFERENT VEGETATION INDICES AND THRESHOLDING METHODS. Nativa, 6(4), 389–394. https://doi.org/10.31413/nativa.v6i4.5405

Edição

Seção

Engenharia Agrícola / Agricultural Engineering

Artigos mais lidos pelo mesmo(s) autor(es)