STABILITY OF VACUUM-PACKED PEACH PALM (Bactris gasipaes Kunth) FLOURS OBTAINED BY DEHYDRATION AND FREEZE-DRYING DURING ACCELERATED STORAGE

Autores

DOI:

https://doi.org/10.31413/nat.v12i4.17755


Palavras-chave:

peach palm, flour, accelerated storage, peroxide value

Resumo

This paper evaluated the stability of vacuum-packed peach palm flours obtained by dehydration and freeze-drying during accelerated storage. For the elaboration of the flours, peach palm fruits (Bactris gasipaes Kunth var. gasipaes), harvested in the Eastern region of Ecuador, were used. The in natura fruits were washed with running water and disinfected. Before treatment, the fruits were scalded and cooled in an ice-water bath. Then, they were peeled, seeded and chopped. The dehydrated and lyophilized materials were pulverized in a blade mill and vibrated sieved for 10 min. Moisture content, ash, crude fiber, fat, carbohydrates, proteins and rheological parameters were determined for the flours. The flours were vacuum packed and stored at 30, 40 and 50 ºC. During accelerated storage, the peroxide value (POV) was determined. The results of this determination were subjected to linear regression analysis as a function of time. The parameters of the Arrhenius model (k and Ea) for the variation of the POV and the temperature acceleration factor (Q10) were also determined. The variation of the POV in both flours showed a similar behavior during accelerated storage, without there being, in general, differences (p ≤ 0.05) regarding the increase of the POV. In all cases, this POV increase during accelerated storage was adjusted to a zero-order reaction and linear models were obtained to estimate the variation of this parameter for each combination of flour and temperature. The Q10 values for the POV variation ranged between 1.05 and 1.29, regardless of the type of flour.

Keywords: peach palm; flour; accelerated storage; peroxide value.

 

Estabilidade de farinhas de pupunha (Bactris gasipaes Kunth) embaladas a vácuo obtidas por desidratação e liofilização durante armazenamento acelerado

 

RESUMO: Este trabalho teve como objetivo avaliar a estabilidade de farinhas de pupunheira embaladas a vácuo obtidas por desidratação e liofilização durante armazenamento acelerado. Para a elaboração das farinhas foram utilizados frutos de pupunheira (Bactris gasipaes Kunth var. gasipaes), colhidos na região Leste do Equador. Os frutos in natura foram lavados com água corrente e desinfetados. Antes do tratamento, os frutos foram escaldados e resfriados em banho de água gelada. Em seguida, foram descascados, semeados e picados. Os materiais desidratados e liofilizados foram pulverizados em moinho de lâminas e peneirados vibratórios por 10 min. Foram determinados o teor de umidade, cinzas, fibra bruta, gordura, carboidratos, proteínas e parâmetros reológicos das farinhas. As farinhas foram embaladas a vácuo e armazenadas a 30, 40 e 50 ºC. Durante o armazenamento acelerado, o valor de peróxido (POV) foi determinado. Os resultados desta determinação foram submetidos à análise de regressão linear em função do tempo. Também foram determinados os parâmetros do modelo de Arrhenius (k e Ea) para a variação do POV e o fator de aceleração da temperatura (Q10). A variação do POV em ambas as farinhas apresentou comportamento semelhante durante o armazenamento acelerado, sem haver, em geral, diferenças (p ≤ 0,05) quanto ao aumento do POV. Este aumento do POV durante o armazenamento acelerado foi ajustado, em todos os casos, para uma reação de ordem zero e foram obtidos modelos lineares para estimar a variação deste parâmetro para cada combinação de farinha e temperatura. Os valores de Q10 para a variação do POV variaram entre 1,05 e 1,29, independente do tipo de farinha.

Palavras-chave: pupunha; farinha; armazenamento acelerado; valor de peróxido.

Referências

AHMED, J.; THOMAS, L.; KHASHAWI, R. Influence of hot air and freeze-drying on functional, rheological, structural and dielectric properties of green banana flour and dispersions. Food Hydrocolloids, v. 99, 105331, 2020. https://doi.org/10.1016/j.foodhyd.2019.105331

AOAC_Association of Official Analytical Chemists. Official Methods of Analysis of Association of Official Analytical Chemists. 17th ed. Washington: AOAC, 2002.

BAO, H.; ZHOU, J.; YU, J.; WANG, S. Effect of drying methods on properties of potato flour and noodles made with potato flour. Foods, v. 10, e1115, 2021. https://doi.org/10.3390/foods10051115

BHATTA, S.; STEVANOVIC, T.; RATTI, C. Freeze-Drying of Plant-Based Foods. Foods, v. 9, n. 1, e87, 2020. https://doi.org/10.3390/foods9010087

BUZERA, A.; GIKUNDI, E.; ORINA, I.; SILA, D. Effect of pretreatments and drying methods on physical and microstructural properties of potato flour. Foods, v. 11, n. 4, e507, 2022. https://doi.org/10.3390/foods11040507

CAIN, J. An alternative technique für determining ANSI/CEMA standard flowability ratings for granular materials. Powder Handling Process, v. 14, n. 3, p. 218-221, 2002.

CAIN, J. H.; QUESNEL, D. J. A comparison of density measurements for a cohesive powder. In: Powder & Bulk Solids. Chicago, IL: Rosemont, 1996.

CALLIGARIS, S.; MANZOCCO, L.; KRAVINA, G.; NICOLI, M.C. Shelf-life modeling of bakery products by using oxidation indices. Journal of Agriculture and Food Chemistry, v. 55, n. 5, p. 2004-2009, 2007. https://doi.org/10.1021/jf063004h

CAMACHO, M. M.; SILVA-ESPINOZA, M. A.; MARTÍNEZ-NAVARRETE, N. Flowability, Rehydration behavior and bioactive compounds of an orange powder product as affected by particle size. Food and Bioprocess Technology, v. 15, p. 683-692, 2022. https://doi.org/10.1007/s11947-022-02773-9

CARR, R. L. Evaluating flow properties of solids. Chemical Engineering, v. 72, n. 3, p. 163-168, 1965. https://doi.org/10.1001/archopht.1965.00970040165007

CLEMENT, C. R.; DE CRISTO-ARAÚJO, M.; COPPENS, G.; DOS REIS, V.; LEHNEBACH, R.; PICANÇO, D. Origin and dispersal of domesticated peach palm. Frontiers in Ecology and Evolution, v. 5, p. 1-19, 2017. https://doi.org/10.3389/fevo.2017.00148

CORREA, S.; CLERICI, M.; GARCIA, J.; FERREIRA, E.; EBERLIN, M.; AZEVEDO, L. Evaluation of dehydrated marolo (Annona crassiflora) flour and carpels by freeze-drying and convective hot-air drying. Food Research International, v. 44, p. 2385-2390, 2011. http://dx.doi.org/10.1016/j.foodres.2011.02.052

COSTA, R. D. S. da; RODRIGUES, A. M. da C.; SILVA, L. H. M. da. The fruit of peach palm (Bactris gasipaes) and its technological potential: an overview. Food Science and Technology, v. 42, e82721, 2022. https://doi.org/10.1590/fst.82721

CUEVAS-GARCÍA, R. Obtención y análisis de expresiones de cinética química. Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, v. 14, n. 26, p. 1e-25e, 2020. https://doi.org/10.22201/ceiich.24485691e.2021.26.69639

GADANI, B. C.; MILÉSKI, K. M. L.; PEIXOTO, L. S.; AGOSTINI, J. DA S. Physical and chemical characteristics of cashew nut flour stored and packaged with different packages. Food Science and Technology, v. 37, n. 4, p. 657-662, 2017. https://doi.org/10.1590/1678-457X.27516

GAIBOR, F. M.; RODRÍGUEZ, D.; GARCÍA, M. A.; PERAZA, C. M.; VIDAL, D.; NOGUEIRA, A.; CASARIEGO, A. (2022). Development of a food colorant from Syzygium cumini L. (Skeels) by spray drying. Journal of Food Science and Technology, v. 59, n. 10, p. 4045-4055, 2022. https://doi.org/10.1007/s13197-022-05454-9

GONZÁLEZ-JARAMILLO, N.; BAILON-MOSCOSO, N.; DUARTE-CASAR, R.; ROMERO-BENAVIDES, J. C. Peach Palm (Bactris gasipaes Kunth.): Ancestral tropical staple with future potential. Plants, v. 11, n. 22, e3134, 2022. https://doi.org/10.3390/plants11223134

GULKIRPIK, E.; TOC, M.; ATUNA, R. A.; AMAGLOH, F. K.; ANDRADE, J. E. Evaluation of oxidative stability of full fat soybean flour in storage and sensory quality of tuo zaafi-enriched with soy flour as influenced by traditional processing methods. Foods, v. 10, n. 9, e2192, 2021. https://doi.org/10.3390/foods10092192

GUTIÉRREZ, L. F.; RATTI, C.; BELKACEMI, K. Effects of drying method on the extraction yields and quality of oils from Quebec sea buckthorn (Hippophaë rhamnoides L.) seeds and pulp. Food Chemistry, v. 106, p. 896-904, 2008. https://doi.org/10.1016/J.FOODCHEM.2007.06.058

HASMADI, M. (2021). Effect of water on the caking properties of different types of wheat flour. Food Research, v. 5, p. 266-270, 2021. https://doi.org/10.26656/fr.2017.5(1).412

HURTADO-RIBEIRA, R.; HERNÁNDEZ, D. M.; VILLANUEVA, D.; GARCÍA-RISCO, M. R.; HERNÁNDEZ, M. D.; VÁZQUEZ, L.; FORNARI, T.; MARTIN, D. The interaction of slaughtering, drying, and defatting methods differently affects oxidative quality of the fat from Black Soldier fly (Hermetia illucens) larvae. Insects, v. 14, n. 4, e368, 2023. https://doi.org/10.3390/insects14040368

KALMAN, H. Quantification of mechanisms governing the angle of repose, angle of tilting, and Hausner ratio to estimate the flowability of particulate materials. Powder Technology, v. 382, p. 573-593, 2021. https://doi.org/10.1016/j.powtec.2021.01.012

LETURIA, M.; BENALI, M.; LAGARDE, S.; RONGA, I.; SALEH, K. Characterization of flow properties of cohesive powders: A comparative study of traditional and new testing methods. Powder Technology, v. 253, p. 406-423, 2014. https://doi.org/10.1016/j.powtec.2013.11.045

MARTÍNEZ, C. A. Efecto de la inclusión de harina de chontaduro (Bactris gasipaes) en la calidad de la mortadela. Dissertation [Master's Degree in Food Technology] - Universidad Técnica de Ambato, Facultad de Ciencia e Ingeniería en Alimentos y Biotecnología, Ambato, Ecuador, 2019.

MARTÍNEZ-GIRÓN, J.; RODRÍGUEZ-RODRÍGUEZ, X.; PINZÓN-ZÁRATE, L. X.; ORDÓÑEZ-SANTOS, L. E. Caracterización fisicoquímica de harina de residuos del fruto de chontaduro (Bactris gasipaes Kunth, Arecaceae) obtenida por secado convectivo. Corpoica Ciencia y Tecnología Agropecuaria, v. 18, n. 3, 599-613, 2017. https://doi.org/10.21930/rcta.vol18_num3_art:747599-613

MIRHOSSEINI, H.; AMID, B. T. Effect of different drying techniques on flowability characteristics and chemical properties of natural carbohydrate-protein Gum from durian fruit seed. Chemistry Central Journal, v. 7, e01, 2013. https://doi.org/10.1186/1752-153X-7-1

NTE INEN 1529-11. Control microbiológico de los alimentos. Mohos y levaduras viables. Detección. Ecuador, 2013. 2p.

NTE INEN 1529-8. Control microbiológico de los alimentos. Detección y recuento de Escherichia coli presuntiva por la técnica del número más probable. Ecuador, 2015. 4p.

NTE INEN 3084. Mezclas secas de panadería. Requisitos. Ecuador, 2015. 3p.

PEIXOTO, N. M.; ARRUDA, H. S.; MARQUES, D. R. P.; DE OLIVEIRA, W. Q.; PEREIRA, G. A.; PASTORE, G. M. Functional and nutritional properties of selected Amazon fruits: A review. Food Research International, v. 147, e110520, 2021. https://doi.org/10.1016/j.foodres.2021.110520

PEREIRA, T. R. Vida de anaquel de la harina de trigo (Triticum aestivum L.) extruida, elaborada por el molino San Miguel E.I.R.L, mediante pruebas de vida útil aceleradas. 120f. Thesis [Food Industry Engineer] - Pedro Ruiz Gallo National University, Lambayeque, Peru, 2017.

PIRES, M. B.; AMANTE, E. R.; LOPES, A. S.; RODRIGUES, A. M. DA C.; SILVA, L. H. M. DA. Peach palm flour (Bactris gasipae Kunth): potential application in the food industry. Food Science and Technology, v. 39, n. 3, p. 613-619, 2019. https://doi.org/10.1590/fst.34617

SAKER, A.; CARES-PACHECO, M. G.; MARCHAL, P.; FALK, V. Powders flowability assessment in granular compaction: What about the consistency of Hausner ratio? Power Technology, v. 354, p. 52-63, 2019. https://doi.org/10.1016/j.powtec.2019.05.032

SANTOS, O. V. dos; SOARES, S. D.; DIAS, P. C. S.; DUARTE, S. de P. de A.; SANTOS, M. P. L. dos; NASCIMENTO, F. das C. A. do. Chromatographic profile and bioactive compounds found in the composition of pupunha oil (Bactris gasipaes Kunth): implications for human health. Revista de Nutrição, v. 33, e190146, 2020. https://doi.org/10.1590/1678-9805202033e190146

SILVA-ESPINOZA, M. A.; AYED, C.; CAMACHO, M. M.; FOSTER, T.; MARTÍNEZ-NAVARRETE, N. Impact of maltodextrin, gum Arabic, different fibers and starches on the properties of freeze-dried orange puree powder. Food Biophysics, v. 16, p. 270-279, 2021. https://doi.org/10.1007/s11483-021-09667-x

SINGH, A. K.; SELVAM, R. P.; SIVAKUMAR, T. Isolation, characterization and formulation properties of a new plant gum obtained from Mangifera indica. International Journal of Pharmacy & Biomedical Research, v. 1, p. 35-41, 2010.

TONON, V.; BRABET, C.; PALLET, D.; BRA, P.; HUBINGER, D. Physicochemical and morphological characterization of açai powder produced with different carrier agents. International Journal of Food Science & Technology, v. 44, p. 1950-1958, 2009. https://doi.org/10.1111/j.1365-2621.2009.02012.x

UMUHOZARIHO, M. G.; HAGENIMANA, T.; NSABIMANA, P.; SIRIMU, C.; UWOBASA, N.; UWINEZA, A. P. Effect of oven and freeze drying on nutritional composition of pumpkin (Cucurbita maxima) processed flour. Rwanda Journal of Agricultural Sciences, v. 2, n. 1, p. 33-39, 2020.

VALENZUELA, V. E. Optimización de la obtención de harina de nuez (Juglans regia) de la variedad semilla California, Chandler y Serr, y estudio de su estabilidad química en el tiempo. 52f. Thesis [Food Industry Engineer] - University of Chile, Santiago, 2006.

VANHANEN, L. P.; SAVAGE, G. P. The use of peroxide value as a measure of quality for walnut flour stored at five different temperatures using three different types of packaging. Food Chemistry, v. 99, p. 64-69, 2006. https://doi.org/10.1016/j.foodchem.2005.07.020

VARGAS, V.; CLEMENT, C.; MORAES, M. Bactris gasipaes (Arecaceae): Una palmera con larga historia de aprovechamiento y selección en Sud América. In: MORAES, M. (Ed.). Palmeras y usos: Especies de Bolivia y la Región. La Paz, Bolivia: Universidad Mayor de San Andrés, Plural Editores, 2020. p. 37-46.

WEI, C. Y.; ZHU, D.; NYSTRÖM, L. Improving wholegrain product quality by selecting lipid-stable wheat varieties. Food Chemistry, v. 345, e128683, 2021. https://doi.org/10.1016/j.foodchem.2020.128683

Downloads

Publicado

2024-11-26

Edição

Seção

Bioprospecção e Biotecnologia / Bioprospecting and Biotechnology

Como Citar

STABILITY OF VACUUM-PACKED PEACH PALM (Bactris gasipaes Kunth) FLOURS OBTAINED BY DEHYDRATION AND FREEZE-DRYING DURING ACCELERATED STORAGE. (2024). Nativa, 12(4), 716-724. https://doi.org/10.31413/nat.v12i4.17755

Artigos mais lidos pelo mesmo(s) autor(es)