TECHNOLOGICAL PROPERTIES OF Memecylon lateriflorum WOOD: A TIMBER SPECIES FROM GHANA
DOI:
10.31413/nat.v11i3.15885Palavras-chave:
Valorization of wood, Physical-mechanical properties, Wood qualityResumo
A critical aspect of the Sustainable Forest Management scheme is promoting lesser-used timber species in substituting the over-exploited timber species of similar technical characteristics. The study's main objective was to evaluate the technological properties within the tree height of Memecylon lateriflorum (G. Don) Bremek. They were using small clear, defect-free, straight-grained wood samples. Using standardized procedures, the samples were harvested, prepared, and conditioned from the diameter at breast height (DBH), middle, and top portion of the trees. The results indicated that the density of M. lateriflorum was 840 kg/m3, which characterizes it as a high-density wood. The study again revealed a strong correlation (83-99 %) between the woods' densities and mechanical strength characteristics. Also, the overall average tangential and radial shrinkage from green to 12 % moisture content was 9.46% and 6.57%, respectively, whereas that of longitudinal was 0.65%. The mean strength values recorded in N/mm2 at 12% moisture content were: modulus of elasticity (19.724), modulus of rupture (143.00), compression (62.40), shear (20.50), and tensile parallel to grain (149.20). Janka hardness test recorded mean values of 15.70 and 14.30 kN in the radial and tangential directions. Thus, M. lateriflorum could be promoted as an efficient choice for construction and structural applications.
Keywords: valorization of wood; physical-mechanical properties; wood quality.
Propriedades tecnológicas da madeira de Memecylon lateriflorum: uma espécie madeireira de Gana
RESUMO: Um aspecto crítico do Manejo Florestal Sustentável é a promoção de espécies madeireiras menos utilizadas em substituição às espécies madeireiras traidionais. O objetivo principal do estudo foi avaliar as propriedades tecnológicas na altura da árvore de Memecylon lateriflorum (G. Don) Bremek. usando pequenas amostras de madeira clear (grã reta e sem defeitos). As amostras foram colhidas, preparadas e acondicionadas a partir do diâmetro à altura do peito (DAP), porção média e superior das árvores, utilizando procedimentos padronizados. Os resultados indicaram que a densidade de M. lateriflorum foi de 840 kg/m3 o que a caracteriza como uma madeira de alta densidade. O estudo revelou novamente uma forte correlação (83-99%) entre as densidades das madeiras e as características de resistência mecânica. Além disso, a retração tangencial e radial da madeira verde até 12% de umidade foi de 9,46% e 6,57%, respectivamente. A retração longitudinal foi de 0,65%. Os valores médios de resistência registrados em N/mm2 com 12% de umidade foram: módulo de elasticidade (19.724), módulo de ruptura (143), compressão (62,4), cisalhamento (20,5) e tração paralela às fibras (149,2). O ensaio de dureza Janka registrou valores médios de 15,7 e 14,3 kN nas direções radial e tangencial. Assim, M. lateriflorum poderia ter seu uso promovido como uma escolha eficiente para construção e aplicações estruturais.
Palavras-chave: valorização da madeira; propriedades físico-mecânicas; qualidade da madeira.
Referências
AIYELOJA, A. A.; OGUNSANWO, O. Y.; ASIYANBI, A. P. Determinants of Preference for Lesser-Known Species among Cabinet-Makers in Oyo and Osun States, Nigeria. Small-scale Forestry, v. 10, p. 37-51, 2011. https://doi.org/10.1007/s11842-010-9129-8
AGYEMAN, V. K.; AYARKWA, J.; OWUSU, F. W.; BOACHIE-DAPAAH, A. S. K.; ADADE-MENSAH, A.; APPIAH, S. K.; ... PATTIE, D. Technological and investment profiles of some lesser used timber species in Ghana. ITTO/FORIG/FC. Ghana, 2003. 76p.
ASDRUBALI, F.; FERRACUTI, B.; LOMBARDI, L.; GUATTARI, C.; EVANGELISTI, L.; GRAZIESCHI, G. A review of structural, thermo-physical, acoustical, and environmental properties of wooden materials for building applications. Building and Environment, v. 114, p. 307-332, 2017. https://doi.org/10.1016/j.buildenv.2016.12.033
AYARKWA, J.; OWUSU, F. W.; APPIAH, J. K. Steam bending qualities of eight timber species of Ghana, 2011. Ghana Journal of Forestry, v. 27, n. 2, p. 11-22, 2011.
AYARKWA, J. Timber Technology for Researchers, Polytechnics and University Students. Kumasi: Classic Graphics Print, 2009.
BANGURA, W.; ISHENGOMA, R. C.; MAKONDA, F. B. S.; HAMZA, F. K. S. Some properties of commercially lesser known and lesser utilized timber species of Brachystegia bussei and Berchemia discolor (Klotzch Hemsley) from Tanzania. Tanzania Journal of Forestry and Nature Conservation, v. 74, p. 70-81, 2001.
BARANY, M.; HAMMETT, A. L.; ARAMAN, P. Lesser used species of Bolivia and their relevance to sustainable forest management. Forest Products Journal, v. 53, n. 7/8, p. 28-33, 2003.
BENHIN, J. K.; BARBIER, E. B. Forestry, deforestation and biodiversity in Ghana. In: PERRINGS, C. (Ed.) The Economics of Biodiversity Conservation in Sub-Saharan Africa. Edward Elgar Publishing, 2000. p. 185-231https://doi.org/10.4337/9781035303991.00017
BODIG, J.; JAYNE, B. A. Mechanics of wood and wood composites. Malabar: Krieger Publishing Company, 1993. 736p.
BRANCHERIAU, L.; BAILLERES, H.; GUITARD, D. Comparison between modulus of elasticity values calculated using 3- and 4-point bending tests on wooden samples. Wood Science and Technology, v. 36, n. 5, p. 367-383, 2002. https://doi.org/10.1007/s00226-002-0147-3
BUONGIORNO, J.; ZHU, S.; ZHANG, D.; TURNER, J.; TOMBERLIN, D. The global forest products model: structure, estimation, and applications. Elsevier, 2003. p. 49-52. https://doi.org/10.1016/B978-0-12-141362-0.X5000-6
CHAUHAN, S.; ARUN KUMAR, A. N. Assessment of variability in morphological and wood quality traits in Melia dubia Cav. for selection of superior trees. Journal of the Indian Academy of Wood Science, v. 11, p. 25-32, 2014. https://doi.org/10.1007/s13196-014-0113-3
CHEN, C.; KUANG, Y.; ZHU, S.; BURGERT, I.; KEPLINGER, T.; GONG, A.; ... HU, L. Structure–property–function relationships of natural and engineered wood. Nature Reviews Materials, v. 5, n. 9, p. 642-666, 2020. https://doi.org/10.1038/s41578-020-0195-z
CHRISTOFORO, A. L.; HENDRIGO, T. Shrinkage for some wood species estimated by density. International Journal of Materials Engineering, p. 22-24, 2016.
DIN 52182, BSI 373 (1957). British Standard 373. Methods of testing small clear specimens of timber London: British Standard Institution. BS 373:1957 Methods of testing small clear specimens of timber, British Standards Institution - Publication Index | NBS (thenbs.com)
DINWOODIE, J. M. Timber Its Nature and Behaviour. England: Van Nostrand Reinhold Company Ltd, 1981. 272p.
DOVIE, D. B. Rural economy and livelihoods from the non-timber forest products trade. Compromising sustainability in southern Africa? The International Journal of Sustainable Development & World Ecology, v. 10, n. 3, p. 247-262, 2003. https://doi.org/10.1080/13504500309469803
EWUDZIE, J.; GEMADZIE, J.; ADJARKO, H. Exploring the utilization of Lesser-Known Species for Furniture Production - a Case Study in the Western Region, Ghana. Open Access Library Journal, v. 5, n. 11, e4916, 2018. https://doi.org/10.4236/oalib.1104916
FAGGIANO, B.; GRIPPA, M. R.; MARZO, A.; MAZZOLANI, F. M. Experimental study for non-destructive mechanical evaluation of ancient chestnut timber. Journal of Civil Structural Health Monitoring, v. 1, p. 103-112, 2011. https://doi.org/10.1007/s13349-011-0011-y
FILIPESCU, C. N.; LOWELL, E. C.; KOPPENAAL, R.; MITCHELL, A. K. Modeling regional and climatic variation of wood density and ring width in intensively managed Douglas-fir. Canadian Journal of Forest Research, v. 44, n. 3, p. 220-229, 2014. https://doi.org/10.1139/cjfr-2013-0275
HILL, C. A. Wood Modification. Chemical, thermal and other processes. Bangor: John WIlley & Sons Ltd, 2006. 264p.
FPL_Forest Products Laboratory. Wood Handbook: Wood as an engineering material. Madison: United States Department of Agriculture, Forest Science, 2010. 509p. Available on: https://www.fpl.fs.usda.gov/documnts/fplgtr/fpl_gtr190.pdf
Forestry Commission (FC) of Ghana Annual Report. Forestry Commission Annual Report – 2019. 2019. 76p. Available on: https://fcghana.org/wp-content/uploads/2022/07/2019-FC-ANNUAL-REPORT-FINAL.pdf
FRODESON, S.; HENRIKSSON, G.; BERGHEL, J. Effects of moisture content during densification of biomass pellets, focusing on polysaccharide substances. Biomass and Bioenergy, v. 122, p. 322-330, 2019. https://doi.org/10.1016/j.biombioe.2019.01.048
GENDEK, A.; ANISZEWSKA, M.; MALAŤÁK, J.; VELEBIL, J. Evaluation of selected physical and mechanical properties of briquettes produced from cones of three coniferous tree species. Biomass and Bioenergy, v. 117, p. 173-179, 2018. https://doi.org/10.1016/j.biombioe.2018.07.025
GETAHUN, Z.; PODDAR, P.; SAHU, O. The Influence of physical and mechanical properties on quality of wood produced from Pinus patula tree grown at Arsi Forest. Advanced Research Journal of Plant and Animal Sciences, v. 2, n. 4, p. 32-41, 2014.
GILLAH, P. R.; MAKONDA, F. B.; ISHENGOMA, R. C.; KADALA, B.; KITOJO, D. H. Some physical and mechanical properties of Uapaca kirkiana, a lesser-known timber species from Tanzania. Tanzania Journal of Forestry and Nature Conservation, v. 76, n. 1, p. 94-101, 2007.
GROENENDIJK, P.; SASS-KLAASSEN, U.; BONGERS, F.; ZUIDEMA, P. A. Potential of tree-ring analysis in a wet tropical forest: a case study on 22 commercial tree species in Central Africa. Forest Ecology and Management, v. 323, p. 65-78, 2014. https://doi.org/10.1016/j.foreco.2014.03.037
GREEN, D. W.; WINANDY, J. E.; KRETSCHMANN, D. E. Mechanical Properties of Wood. In: F. P. Laboratory (Ed.) Wood as an engineering material. Madison, United States: US Department of Agriculture, Forest Service, 1999. p. 4-46.
GYAMFI, E.; DERKYI, M. A. A.; BROBBEY, L. K. Insights, motives, and means of overcoming forest offenses in Ghana's forestry sector: The case of the Bibiani Forest District. Scientific African, v. 13, e00962, 2021. https://doi.org/10.1016/j.sciaf.2021.e00962
HALL, J. B.; SWAINE, M. D. Distribution and Ecology of Vascular Plants in a Tropical Rain Forest, Forest Vegetation in Ghana. Geobotany 1. The Hague, 1981. 383p. https://doi.org/10.1007/978-94-009-8650-3
HASSAN, A.; SALEMA, A. A.; ANI, F. N.; BAKAR, A. A. A review on oil palm empty fruit bunch fibre‐reinforced polymer composite materials. Polymer Composites, v. 31, n. 12, p. 2079-2101, 2010. https://doi.org/10.1002/pc.21006
HAYGREEN, J. G.; BOYER, J. L. Forest Products and Wood Science (Third Edition ed.). United States: IOWA State University Press/ AMES, 1996. 512p.
HUGHES, M. Defects in natural fibres: their origin, characteristics and implications for natural fibre-reinforced composites. Journal of Materials Science, v. 47, p. 599-609, 2012. https://doi.org/10.1007/s10853-011-6025-3
ISHENGOMA, R. C.; GILLAH, P. R.; AMARTEY, S. A. Physical, mechanical and natural decay resistance properties of lesser known and lesser utilized Diospyros mespiliformis, Tyrachylobium verrucosum and Newtonia paucijuga timber species from Tanzania. Holz als Roh-und Werkstoff, v. 62, p. 387–389, 2004. https://doi.org/10.1007/s00107-003-0452-z
ISHENGOMA, R. C.; GILLAH, P. R.; ANDALWISE. Some physical and strength properties of lesser known Milletia oblata sub spp stolzii from Tanzania. Faculty of Forestry, Sokoine University of Agriculture, 1998. p. 54-59. (Record, 67)
ISHENGOMA, R. C.; GILLAH, P. R.; CHIHONGO, A. W. Properties of lesser utilized Trichilia emetica (rocka) and Pterocarpus stolzii timber species of Tanzania. Annals of Forestry, v. 5, n. 1, p. 10-15, 1997.
IUCN_International Union for Conservation of Nature (IUCN) and Natural Resources. (2004). Red list of threatened species. Cambridge, United Kingdom: The World Conservation Press, 2004. 191p. Available on: https://portals.iucn.org/library/node/9830
JAILLON, L.; POON, C. S. Sustainable construction aspects of using prefabrication in dense urban environment: a Hong Kong case study. Construction management and Economics, v. 26, n. 9, p. 953-966, 2008. https://doi.org/10.1080/01446190802259043
KARE, B. Seeds and Embryos in Sri Lanka (Ceylonese) species of Memecylon with notes on Spathandra (Melastomataceae). Nordic Journal of Botany, v. 1, n. 1, p. 62-65, 1981. https://doi.org/10.1111/j.1756-1051.1981.tb01036.x
KING, D. A.; DAVIES, S. J.; TAN, S.; NOOR, N. S. M. The role of wood density and stem support costs in the growth and mortality of tropical trees. Journal of Ecology, v. 94, n. 3, p. 670-680, 2006. https://doi.org/10.1111/j.1365-2745.2006.01112.x
KING, D. A.; DAVIES, S. J.; SUPARDI, M. N.; TAN, S. (2005). Tree growth is related to light interception and wood density in two mixed dipterocarp forests of Malaysia. Functional Ecology, v. 19, n. 3, p. 445-453, 2005. https://doi.org/10.1111/j.1365-2435.2005.00982.x
KOLLMANN, F. Technologie des Holzes und der Holzwerkstoffe. Springer, I, 1951. p. 910-926.
LARJAVAARA, M.; MULLER‐LANDAU, H. C. Still rethinking the value of high wood density. American Journal of Botany, v. 99, n. 1, p. 165-168, 2012. https://doi.org/10.3732/ajb.1100324
LAVERS, G. M. The strength properties of timber. London: HMSO, 1983. 60p.
LEMMENS, R. H. M. J.; LOUPPE, D.; OTENG-AMOAKO, A. A.; BRINK, M. (Eds.) Plant Resources of Tropical Africa (PROTA), Timbers 2, v. 7, part 2. Earthprint Limited, 2012. 804p.
LOGSDON, N. B.; PENNA, E. S. Comparative analysis between dimensional anisotropy coefficient of wood in swelling and retraction. Tropical Agriculture, v. 8, p. 1-4, 2004.
MEIER, E. W. Identifying and using hundreds of woods worldwide. Wood Database. 2015. 31p. Avaliable on: https://www.wood-database.com/wp-content/uploads/wood-book-sample.pdf
MI, R.; CHEN, C.; KEPLINGER, T.; PEI, Y.; HE, S.; LIU, D.; LI, J.; DAI, J.; HITZ, E.; YANG, B.; BURGERT, I.; HU, L. Scalable aesthetic transparent wood for energy efficient buildings. Nature Communications, v. 11, n. 1, e3836, 2020. https://doi.org/10.1038/s41467-020-17513-w
MIRZAAKBAROVNA, M. S. Wood drying in construction. The American Journal of Applied Sciences, v. 3, n. 5, p. 229-233, 2021. https://doi.org/10.37547/tajas/Volume03Issue05-36
NGAMAU, C.; KANYI, B.; EPILA-OTARA, J.; MWANGINGO, P.; WAKHUSAMA, S. Towards Optimizing the Benefits of Clonal Forestry to Small-scale Farmers in East Africa. ISAAA Briefs, n. 33, p. 23-29, 2004.
NOCETTI, M.; BRANCHERIAU, L.; BACHER, M.; BRUNETTI, M.; CRIVELLARO, A. Relationship between local and global modulus of elasticity in bending and its consequence on structural timber grading. European Journal of Wood and Wood Products, v. 71, p. 297-308, 2013. https://doi.org/10.1007/s00107-013-0682-7
OHEMENG, E. Functional Relationship between density and mechanical properties of Ricinidendron heudelotii. Global Journal of Medicinal Plants Research, v. 9, n. 1, p. 09-17, 2022.
OFORI, J.; BRENTUO, B.; MENSAH, M.; MOHAMMED, I.; BOAMAH, T. R. Properties of 10 Ghanaian high density lesser-used of importance to bridge construction. Part 1: Green Moisture content, basic density and shrinkage characteristics, v. 25, e70, 2009.
OWEN, M.; VAN DER PLAS, R.; SEPP, S. Can there be energy policy in Sub-Saharan Africa without biomass? Energy for Sustainable Development, v. 17, n. 2, p. 146-152, 2013. https://doi.org/10.1016/j.esd.2012.10.005
PANSHIN, A.; DE ZEEUW, C. Textbook of Wood Technology. 4th Ed. New York: McGraw-Hill, 1980. 722p.
PELTOLA, H.; PÄÄKKÖNEN, E.; JETSU, P.; HEINEMANN, S. Wood based PLA and PP composites: Effect of fibre type and matrix polymer on fibre morphology, dispersion and composite properties. Composites Part A: Applied Science and Manufacturing, v. 61, p. 13-22, 2014. https://doi.org/10.1016/j.compositesa.2014.02.002
PIISPANEN, R.; HEIKKINEN, J.; VALKONEN, S. Deformations of boards from uneven-aged Norway spruce stands. European Journal of Wood and Wood Products, v. 78, p. 533-544, 2020. https://doi.org/10.1007/s00107-020-01524-x
POKU, K.; WU, Q.; VLOSKY, R. Wood properties and their variations within the tree stem of lesser-used species of tropical hardwood from Ghana. Wood and Fiber Science, v. 33, n. 2, p. 284-291, 2001.
POORTER, L.; MCDONALD, I.; ALARCÓN, A.; FICHTLER, E.; LICONA, J. C.; PEÑA‐CLAROS, M.; STERCK, F.; VILLAGAS, Z.; SASS-KLAASSEN, U.; SASS‐KLAASSEN, U. The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytologist, v. 185, n. 2, p. 481-492, 2010. https://doi.org/10.1111/j.1469-8137.2009.03092.x
PROTA4U.ORG. (2020, August 20). Retrieved from Ricinodendron africanum. Available on: https://prota.prota4u.org/protav8.asp?g=pe&p=Ricinodendron+heudelotii
RACELIS, A. E.; BARSIMANTOV, J. A. The management of small diameter, lesser-known hardwood species as polewood in forest communities of central Quintana Roo, Mexico. Journal of Sustainable Forestry, v. 27, n. 1-2, p. 122-144, 2008. https://doi.org/10.1080/10549810802203082
RAMAGE, M. H., BURRIDGE, H., BUSSE-WICHER, M., FEREDAY, G., REYNOLDS, T., SHAH, D. U., WU, G., YU, L., FLEMING, P., DENSLEY-TINGLEY, D., ALLWOOD, J., DUPREE, P., LINDEN, P. F. & SCHERMAN, O. The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews, v. 68, p. 333-359, 2017. https://doi.org/10.1016/j.rser.2016.09.107
RECORD, S. J. The mechanical properties of wood. New Haven: Yale Forest School, 1914. Available on: https://www.gutenberg.org/files/12299/12299-h/12299-h.htm
REDMAN, A. L.; BAILLERES, H.; TURNER, I.; PERRÉ, P. Characterisation of wood–water relationships and transverse anatomy and their relationship to drying degrade. Wood Science and Technology, v. 50, p. 739-757, 2016. https://doi.org/10.1007/s00226-016-0818-0
SARANPÄÄ, P. Wood density and growth. In: BARNETT, J. R.; JERONIMIDIS, G. (Eds.) Wood Quality and its Biological Basis. Oxford: Blackwell Publishing Ltd, 2003. p. 87-117.
SCHULGASSER, K.; WITZTUM, A. How the relationship between density and shrinkage of wood depends on its microstructure. Wood Science and Technology, v. 49, p. 389-401, 2015. https://doi.org/10.1007/s00226-015-0699-7
SOSEF, M. S.; HONG, L. T.; PRAWIROHATMODJO, S. Plant Resources of South-East Asia. Timber Trees: Lesser-Known timbers (Vol. 5). Leiden: Backhuys Publishers, 1998.
STANKEY, G. H.; SHINDLER, B. Formation of social acceptability judgments and their implications for management of rare and little‐known species. Conservation Biology, v. 20, n. 1, p. 28-37, 2006. https://doi.org/10.1111/j.1523-1739.2005.00298.x
STONE, R. D. The species-rich, paleotropical genus Memecylon (Melastomataceae): Molecular phylogenetics and revised infrageneric classification of the African species. Taxon, v. 63, n. 3, p. 477-718, 2014. https://doi.org/10.12705/633.10
STONE, R. S. Endemism, species richness and morphological trends in Madagascan Memecylon (Melastomataceae). Plant Ecology and Evolution, v. 145, n. 2, p. 145-151, 2012. https://doi.org/10.5091/plecevo.2012.545
SULAIMAN, O.; FAHMI AWALLUDIN, M.; HASHIM, R.; MONDAL, M. I. H. The effect of relative humidity on the physical and mechanical properties of oil palm trunk and rubberwood. Cellulose Chemistry and Technology, v. 46, n. 5, e401, 2012.
SWENSON, N. G.; ENQUIST, B. J. Ecological and evolutionary determinants of a key plant functional trait: wood density and its community‐wide variation across latitude and elevation. American Journal of Botany, v. 94, n. 3, p. 451-459, 2007. https://doi.org/10.3732/ajb.94.3.451
TIRYAKI, S.; HAMZAÇEBI, C. Predicting modulus of rupture (MOR) and modulus of elasticity (MOE) of heat-treated woods by artificial neural networks. Measurement, v. 49, p. 266-274, 2014. https://doi.org/10.1016/j.measurement.2013.12.004
TSOUMIS, G. A. Science and Technology of wood. Structure, Properties, Utilization. New York: Van Nostrand Reinhold, 1991. 494p.
VAN-GELDER, H. A.; POORTER, L.; STERCK, F. Wood mechanics, allometry, and life‐history variation in a tropical rain forest tree community. New Phytologist, v. 171, n. 2, p. 367-378, 2006. https://doi.org/10.1111/j.1469-8137.2006.01757.x
WANG, S.; WINISTORFERF, P. M. Fundamentals of vertical density profile formation in wood composites. Part II. Methodology of vertical density formation under dynamic conditions. Wood and Fiber Science, v. 32, n. 2, p. 220-238, 2000.
WEEDON, J. T.; CORNWELL, W. K.; CORNELISSEN, J. H.; ZANNE, A. E.; WIRTH, C.; COOMES, D. A. Global meta‐analysis of wood decomposition rates: a role for trait variation among tree species? Ecology Letters, v. 12, n. 1, p. 45-56, 2009. https://doi.org/10.1111/j.1461-0248.2008.01259.x
XUE, Q.; SUN, W.; FAGERSTEDT, K.; GUO, X.; DONG, M.; WANG, W.; CAO, H. Effects of wood rays on the shrinkage of wood during the drying process. BioResources, v. 13, n. 3, p. 7086-7095, 2018
ZOBEL, B. J.; BUIJTENEN, J. P. Wood Variations Its Causes and Control. New York: Springer-Verlag, 1989. 363p.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Nativa
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Direitos Autorais para artigos publicados nesta revista são do autor, com direitos de primeira publicação para a revista. Em virtude de a aparecerem nesta revista de acesso público, os artigos são de uso gratuito, com atribuições próprias, em aplicações educacionais e não-comerciais.
A artigos publicados nessa revista, podem ser reproduzidos parcialmente ou utilizados como referência por outros autores, desde que seja cita a fonte, ou seja, a Revista Nativa.
Copyright for articles published in this journal are the authors, with first publication rights granted to the journal. The journal shows open access, and articles are free to use, with proper attribution, in educational and non-commercial.
The articles published in this journal may be reproduced in part or used as a reference by other authors, provided that the source is quoted.