MICROPLANT PRODUCTION OF Cochlospermum regium (Schrank) Pilg. BY THE INDIRECT ORGANOGENESIS: AN IMPORTANT MEDICINAL PLANT OF THE CERRADO BIOME

Autores

  • Natália Helena Gavilan gavilan.naty@gmail.com
    EmergeAgro, Botucatu, SP, Brazil. https://orcid.org/0000-0002-1117-0027
  • Douglas Machado Leite douglasmachado_95@hotmail.com
    Laboratory of in vitro Culture of Forest Species, Department of Forestry Sciences, Federal University of Lavras, Lavras, MG, Brazil. https://orcid.org/0000-0002-2275-8643
  • Fabíola Magalhães Mendes fbimendes@hotmail.com
    Laboratory of in vitro Culture of Forest Species, Department of Forestry Sciences, Federal University of Lavras, Lavras, MG, Brazil. https://orcid.org/0000-0002-3029-4607
  • Denys Matheus Santana Costa Souza dmscsouza@gmail.com
    Laboratory of in vitro Culture of Forest Species, Department of Forestry Sciences, Federal University of Lavras, Lavras, MG, Brazil. https://orcid.org/0000-0003-4256-7163
  • Leandro Silva de Oliveira leandroengflor@gmail.com
    Institute of Agricultural Science, Federal University of Minas Gerais, Montes Claros, MG, Brazil. https://orcid.org/0000-0003-0800-5001
  • Gustavo Leal Teixeira lealtex@gmail.com
    Institute of Agricultural Science, Federal University of Minas Gerais, Montes Claros, MG, Brazil. https://orcid.org/0000-0001-7293-0790
  • Gilvano Ebling Brondani gilvano.brondani@ufla.br
    Laboratory of in vitro Culture of Forest Species, Department of Forestry Sciences, Federal University of Lavras, Lavras, MG, Brazil. https://orcid.org/0000-0001-8640-5719

DOI:

10.31413/nat.v12i3.16461

Palavras-chave:

in vitro culture, indirect regeneration, adventitious bud, plant regeneration

Resumo

Cochlospermum regium is an endemic and endangered Brazilian Cerrado Biome species traditionally used for its therapeutic properties. However, a significant problem raised by growers is seed dormancy, leading to propagation difficulties. This research aimed to evaluate indirect organogenesis in Cochlospermum regium through callogenesis induction and bud regeneration. Cotyledon, hypocotyl, and radicle tissues from in vitro germinated seedlings were used as explants. TDZ, 2,4-D, and NAA were supplemented in a culture medium to induce morphogenic responses for 49 days. The explants were then transferred to a regeneration culture medium supplemented with BAP and NAA for 49 days. All tissues and PGR combinations prompted callogenesis, with hypocotyl as the most responsive tissue. The combination of hypocotyl tissue and TDZ-induced regeneration of adventitious buds, resulted in 5.3% of regeneration. Adventitious rooting was confirmed at 49 days of in vitro cultivation, making plant regeneration possible.

Keywords: in vitro culture; indirect regeneration; adventitious bud; plant regeneration.

 

Produção de microplantas de Cochlospermum regium (Schrank) Pilg. por organogênese indireta: uma importante planta medicinal do Bioma Cerrado

 

RESUMO: Cochlospermum regium é uma espécie endêmica e ameaçada do bioma do Cerrado brasileiro que tem sido tradicionalmente usada por suas propriedades terapêuticas. No entanto, um problema significativo enfrentado pelos cultivadores é a dormência das sementes, o que dificulta a propagação. Esta pesquisa teve como objetivo avaliar a organogênese indireta em Cochlospermum regium por meio da indução de calogênese e regeneração de gemas. Tecidos do cotilédone, hipocótilo e radícula de plântulas germinadas in vitro foram usados como explantes. TDZ, 2,4-D e ANA foram adicionados a um meio de cultura para induzir respostas morfogênicas durante 49 dias. Em seguida, os explantes foram transferidos para um meio de cultura de regeneração suplementado com BAP e ANA por 49 dias. Todos os tecidos e combinações de reguladores de crescimento induziram a calogênese, sendo o hipocótilo o tecido mais responsivo. A combinação de tecido de hipocótilo e TDZ induziu a regeneração de gemas adventícias, resultando em uma regeneração de 5,3%. A formação de raízes adventícias foi confirmada após 49 dias de cultivo in vitro, tornando possível a regeneração de plantas.

Palavras-chave: cultivo in vitro; regeneração indireta; gemas adventícias; regeneração de plantas.

Referências

AGGARWAL, D.; KUMAR, A.; REDDY, M. S. Shoot organogenesis in elite clones of Eucalyptus tereticornis. Plant Cell, Tissue and Organ Culture, v. 102, p. 45-52, 2010. https://doi.org/10.1007/s11240-010-9703-y

BRONDANI, G. E.; OLIVEIRA, L. S.; KONZEN, E. R.; SILVA, A. L. D.; COSTA, J. L. Mini-incubators improve the adventitious rooting performance of Corymbia and Eucalyptus microcuttings according to the environment in which they are conditioned. Anais da Academia Brasileira de Ciências, v. 90, n. 2, p. 2409-2423, 2018. https://doi.org/10.1590/0001-3765201720170284

CARVALHO, R. S.; CAROLLO, C. A.; MAGALHÃES, J. C.; PALUMBO, J. M. C.; BOARETTO, A. G.; NUNES e Sá, I. C.; FERRAZ, A. C.; LIMA, W. G.; SIQUEIRA, J. M.; FERREIRA, J. M. S. Antibacterial and antifungal activities of phenolic compound-enriched ethyl acetate fraction from Cochlospermum regium (Mart. Et. Schr.) Pilger roots: mechanisms of action and synergism with tannin and gallic acid. South African Journal of Botany, v. 114, p. 181-187, 2018. https://doi.org/10.1016/j.sajb.2017.11.010

FARIA, J. C. T.; TERRA, J. A. P.; MOLINARI, L. V.; DELARMELINA, W. M.; RIBEIRO-KUMARA, C.; NETO, A. R. S.; CARVALHO, D.; BRONDANI, G. E. Use of polylactic acid microvessel to obtain microplantlets of Eucalyptus microcorys through indirect organogenesis. 3 Biotech, v. 11, e364, 2021. https://doi.org/10.1007/s13205-021-02822-8

GALVÃO, F.; SANTOS, E.; DANTAS, F. G. S.; SANTOS, J. I. S.; SAUDA, T. P. C.; SANTOS, A. C.; SOUZA, R. I. C.; PINTO, L. S.; MORAES, C. A. F.; SANGALLI, A.; KASSUYA, C. A. L.; NOGUEIRA, C. R.; OLIVEIRA, K. M. P. Chemical composition and effects of ethanolic extract and gel of Cochlospermum regium (Schrank) Pilg. Leaves on inflammation, pain, and wounds. Journal of Ethnopharmacology, v. 302, Part A, e115881, 2023. https://doi.org/10.1016/j.jep.2022.115881

GAO, F.; PENG, C.; WANG, H.; SHEN, H.; YANG, L. Selection of culture conditions for callus induction and proliferation by somatic embryogenesis of Pinus koraiensis. Journal of Forestry Research, v. 32, p. 483-491, 2021. https://doi.org/10.1007/s11676-020-01147-1

GAVILAN, N. H.; FURLAN, F. C.; ZORZ, A. Z.; OLIVEIRA, L. S.; CAMPOS, W. F.; BRONDANI, G. E. Chemical sterilization of culture medium for in vitro multiplication of Cochlospermum regium. Ciência Rural, v. 48, n. 9, e20170581, 2018. https://doi.org/10.1590/0103-8478cr20170581

GUO, B.; ABBASI, B. H.; ZEB, A.; XU, L. L.; WEI, Y. H. Thidiazuron: a multi-dimensional plant growth regulator. African Journal of Biotechnology, v. 10, p. 8984-9000, 2011. https://doi.org/10.5897/AJB11.636

HARTMANN, H. T.; KESTER, D. E.; DAVIES JR, F. T.; GENEVE, R. L. Plant Propagation: Principles and Practices, 8th ed. São Paulo: Prentice-Hall, 2011. 915p.

HESAMI, M.; DANESHVAR, M. H. Indirect organogenesis through seedling-derived leaf segments of Ficus religiosa - a multipurpose woody medicinal plant. Journal of Crop Science and Biotechnology, v. 21, p. 129-136, 2018. https://doi.org/10.1007/s12892-018-0024-0

INÁCIO, M. C.; PAZ, T. A.; BERTONI, B. W.; PEREIRA A. M. S. Germination of Cochlospermum regium seeds: influence of seed size, vials, vial sealing in vitro, and substrate in vivo. European Journal of Medicinal Plants, v. 6, n. 1, p. 26-33, 2015. https://doi.org/10.9734/EJMP/2015/15077

JOHNSON-FULTON, S. B.; WATSON, L. E. Comparing medicinal uses of Cochlospermaceae throughout its geographic range with insights from molecular phylogenetics. Diversity, v. 10, n. 4, e123, 2018. https://doi.org/10.3390/d10040123

LIMA, J. E. F. W.; AQUINO, F. G.; CHAVES, T. A.; LORZ, A. Development of a spatially explicit approach for mapping ecosystem services in the Brazilian Savanna – MapES. Ecological Indicators, v. 82, p. 513-525, 2017. https://doi.org/10.1016/j.ecolind.2017.07.028

MURASHIGE, T.; SKOOG, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, v. 15, n. 3, p. 473-497, 1962. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

OLIVEIRA, C.; DEGENHARDT-GOLDBACH, J.; BETTENCOURT, G. M. F.; AMANO, E.; FRANCISCON, L.; QUOIRIN, M. Micropropagation of Eucalyptus grandis × E. urophylla AEC 224 clone. Journal of Forestry Research, v. 28, p. 29-39, 2017. https://doi.org/10.1007/s11676-016-0282-6

OLIVEIRA, L. S.; BRONDANI, G. E.; MOLINARI, L. V.; DIAS, R. Z.; TEIXEIRA, G. L.; GONÇALVES, A. N.; ALMEIDA, M. Optimal cytokinin/auxin balance for indirect shoot organogenesis of Eucalyptus cloeziana and production of ex vitro rooted micro-cuttings. Journal of Forestry Research, v. 33, p. 1573-1584, 2022. https://doi.org/10.1007/s11676-022-01454-9

PEDROSO, T. F. M.; BONAMIGO, T. R.; SILVA, J. da; VASCONCELOS, P.; FELIX, J. M.; CARDOSO, C. A. L.; SOUZA, R. I. C.; SANTOS, A. C.; VOLOBUFF, C. R. F.; FORMAGIO, A. S. N.; TRICHEZ, V. D. K. Chemical constituents of Cochlospermum regium (Schrank) Pilg. Root and its antioxidant, antidiabetic, antiglycation, and anticholinesterase effects in Wistar rats. Biomedicine & Pharmacotherapy, v. 111, p. 1383-1392, 2019. https://doi.org/10.1016/j.biopha.2019.01.005

PINDEL, A. Micropropagation of Asparagus densiflorus via axillary shoots, indirect organogenesis, and somatic embryogenesis. Folia Horticulturae, v. 29, n. 2, p. 143-153, 2017. https://doi.org/10.1515/fhort-2017-0014

ROSSI, R. F.; KULCZYNSKI, S. M.; BARBOSA, M. M. M.; TROPALDI, L.; REIS, L. L.; FREITAS, L. A. Superação de dormência de sementes de algodãozinho-do-campo (Cochlospermum regium). Revista Científica Eletrônica de Agronomia, v. 23, n. 1, p.56-63, 2013.

R CORE TEAM. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2018

SALLA, T. D.; SILVA, C. S.; MACHADO, K. L. G.; ASTARITA, L. V.; SANTARÉM, E. R. Non-aerated liquid culture promotes shoot organogenesis in Eucalyptus globulus Labill. Journal of Forestry Research, v. 29, p. 623-629, 2018. https://doi.org/10.1007/s11676-017-0485-5

SANTOS, J. A.; PAULA, N. R.; SOUZA, D. M. S. C.; CARVALHO, D. D.; BRONDANI, G. E. Plant production of Ocotea odorifera (Vell.) Rohwer by the micro-propagation technique. Scientia Forestalis, v. 50, e3759, 2022. https://doi.org/10.18671/scifor.v50.04.

SANDHU, M.; WANI, S. H.; JIMÉNEZ, V. M. In vitro propagation of bamboo species through axillary shoot proliferation: a review. Plant Cell, Tissue and Organ Culture, v. 132, p. 27-53, 2018. https://doi.org/10.1007/s11240-017-1325-1

SETH, S.; PANIGRAHI, J. In vitro organogenesis of Abutilon indicum (L.) Sweet from leaf-derived callus and assessment of genetic fidelity using ISSR markers. The Journal of Horticultural Science and Biotechnology, v. 94, n. 1, p. 70-79, 2018. https://doi.org/10.1080/14620316.2018.1447314

SILVA, A. L. L.; GOLLO, A. L.; BRONDANI, G. E.; HORBACH, M. A.; OLIVEIRA, L. S.; MACHADO, M. P.; LIMA, K. K. D.; COSTA, J. L. Micropropagation of Eucalyptus saligna Sm. from cotyledonary nodes. Pakistan Journal of Botany, v. 47, n. 1, p. 311-318, 2015.

SOUZA, D. M. S. C.; FERNANDES, S. B.; AVELAR, M. L. M.; FRADE, S. R. P.; MOLINARI, L. V.; GONÇALVES, D. S.; BRONDANI, G. E. Mixotrophism effect on in vitro elongation and adventitious rooting of Eucalyptus dunnii. Cerne, v. 25, n. 4, p. 394-401, 2019. https://doi.org/10.1590/01047760201925042638

SOUZA, F. V. D.; CANTO, A. M. M. E.; SOUZA, A. S.; COSTA, M. A. P. C. Residual effect of growth regulators in etiolation and regeneration of in vitro pineapple plants. Revista Brasileira de Fruticultura, v. 32, n. 2, p. 612-617, 2010. https://doi.org/10.1590/S0100-29452010005000075

TAMBARUSSI, E. V.; ROGALSKI, M.; NOGUEIRA, F. T. S.; BRONDANI, G. E.; MARTIN, V. F.; CARRER, H. Influence of antibiotics on indirect organogenesis of teak. Annals of Forest Research, v. 58, n. 1, p. 177-183, 2015. https://doi.org/10.15287/afr.2015.345

ZANG, Q.; LIU, Q.; ZHUGE, F.; WANG, Z.; LIN, X. In vitro regeneration via callus induction in Dendrocalamus asper (Schult.) Backer. Propagation of Ornamental Plants, v. 19, n. 3, p. 66-71, 2019.

ZORZ, A. Z.; FARIA, J. C. T.; SOUZA, D. M. S. C.; GONÇALVES, D. S.; OLIVEIRA, L. S.; SILVA, A. L. L.; CAMPOS, W. F.; BRONDANI, G. E. Microplants production of Eucalyptus cloeziana from indirect organogenesis. Bosque, v. 41, n. 2, p. 113-124, 2020. https://doi.org/10.4067/S0717-92002020000200113

Downloads

Publicado

2024-08-19

Como Citar

Gavilan , N. H. ., Machado Leite , D. ., Mendes , F. M., Souza, D. M. S. C., Oliveira , L. S. de ., Teixeira , G. L., & Brondani, G. E. . (2024). MICROPLANT PRODUCTION OF Cochlospermum regium (Schrank) Pilg. BY THE INDIRECT ORGANOGENESIS: AN IMPORTANT MEDICINAL PLANT OF THE CERRADO BIOME. Nativa, 12(3), 433–438. https://doi.org/10.31413/nat.v12i3.16461

Edição

Seção

Engenharia Florestal / Forest Engineering

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 > >>