EFFECT OF NANO CHELATED NITROGEN AND UREA FERTILIZERS ON WHEAT PLANT UNDER DROUGHT STRESS CONDITION
DOI:
https://doi.org/10.31413/nativa.v6i6.6802Resumen
EFEITO DE NANO-QUELADO DE NITROGÊNIO E UREIA FERTILIZANTE EM PLANTAS DE TRIGO SOB CONDIÇÕES DE ESTRESSE HÍDRICO
Este estudo foi realizado para avaliar os efeitos de nitrogênio nano-quelatado e ureia fertilizante em plantas de trigo sob condição de estresse hídrico. Foram realizados experimentos em dois locais na província de Fars, no Irã. O delineamento experimental adotado foi em parcelas subdivididas no modelo RCBD. O primeiro fator incluiu os tratamentos de irrigação (irrigação normal e retenção na fase de floração), o subfator foi o tratamento com nitrogênio (0, 37, 74 e 110 kg ha-1) na forma de fertilizante ureia e sub-subfator foi nitrogênio (0, 14, 27 e 41 kg ha-1) na forma de adubo nitrogenado nano-quelatado. As características morfométricas estudadas foram o peso da haste, peso da espiga, comprimento da espiga, altura da planta, número do perfilho, diâmetro do caule, antocianina, flavonoides, prolina, carboidratos solúveis, clorofila aeb, carotenóides, peso de 1.000 sementes, rendimento biológico, produtividade e índice de colheita. De acordo com a análise de variâncias, o estresse hídrico, o nitrogênio (uréia) e o nitrogênio nano-quelatado apresentaram efeitos significativos em todas as características agronômicas estudadas. De acordo com comparações de médias, o estresse hídrico levou a uma redução de 51% no rendimento de sementes em comparação com a irrigação normal. A aplicação de 37, 74 e 110 kg ha-1 de ureia levou a um aumento de 9, 19 e 27% no rendimento de sementes em relação ao controle, respectivamente. A aplicação de 14, 27 e 41 kg ha-1 de nano-quelatado levou a um aumento de 31, 44 e 98% no rendimento de sementes em comparação com o controle, respectivamente. Na interação entre estresse, uréia e nano fertilizante na produtividade das sementes, verificou-se que nas condições normal e de estresse a maior média de produtividade de grãos (7591 e 4091 kg ha-1) foi obtida em 110 kg ha-1 de uréia e 41 kg ha-1 adubo nano. Em conclusão, substituindo a ureia por nitrogênio nano-quelatado pode aumentar o rendimento, mesmo no estresse hídrico e diminuir a quantidade de fertilizante necessário.
Palavras-chave: características agronômicas, características bioquímicas, irrigação, produtividade de sementes.
ABSTRACT:
This study was performed to evaluation of nano chelated nitrogen and urea fertilizers on wheat plant under drought stress condition. Experiments were carried out in two locations in Fars province, Iran. Experimental design was performed as split-split plot in RCBD design. The first factor included irrigation treatments (normal and withholding irrigation at flowering stage), sub factor was nitrogen treatment (0, 37, 74 and 110 kg.ha-1) in the form of Urea fertilizer, and sub-sub factor was nitrogen (0, 14, 27 and 41 kg.ha-1) in the form of nano chelated nitrogen fertilizer. Studied traits included stem weight, spike weight, spike length, plant height, tiller number, stem diameter, anthocyanin, flavonoid, proline, soluble carbohydrates, chlorophyll a and b, carotenoid, 1000-seed weight, biological yield, seed yield and harvest index. According to analysis of variances, stress, nitrogen (urea) and nano chelated nitrogen had significant effects on all studied traits. According to mean comparisons, drought stress led to 51% reduction in seed yield compared to normal irrigation. Application of 37, 74 and 110 kg.ha-1 urea led to 9, 19 and 27% increase in seed yield compared to control, respectively. Application of 14, 27 and 41 kg.ha-1 nano fertilizer led to 31, 44 and 98% increase in seed yield compared to control, respectively. In interaction between stress, urea and nano fertilizer on seed yield, was found that at normal and stress condition the highest mean of seed yield (7591 and 4091 kg.ha-1) was obtained by 110 kg.ha-1 urea and 41 kg.ha-1 nano fertilizer. In conclusion replacing urea by nano chelated nitrogen can increase the yield even in the drought stress and decrease amount of needed fertilizer.
Keywords: agronomic traits, biochemical traits, irrigation, seed yield.
Referencias
ABID, M.; HAKEEM, A.; SHAO, Y.; LIU, Y.; ZAHOOR, R.; FAN, Y.; SUYU, J.; ATA-UL-KARIM, S. T.; TIAN, Z.; JIANG, D.; SNIDER, J. L. Seed osmo-priming invokes stress memory against post-germinative drought stress in wheat (Triticum aestivum L.). Environmental and Experimental Botany, Elmsford, v. 145, p. 12-20, jan. 2018. DOI: https://doi.org/10.1016/j.envexpbot.2017.10.002
ALI, S.; XU, Y.; JIA, Q.; AHMAD, I.; WEI, T.; REN, X.; ZHANG, P.; DIN, R.; CAI, T.; JIA, Z. Cultivation techniques combined with deficit irrigation improves winter wheat photosynthetic characteristics, dry matter translocation and water use efficiency under simulated rainfall conditions. Agricultural Water Management, Amsterdam, v. 201, p. 207-218, mar. 2018. DOI: https://doi.org/10.1016/j.agwat.2018.01.017
ALLAHVERDIYEV, T. I.; TALAI, J. M.; HUSEYNOVA, I. M.; ALIYEV, J. A. Effect of drought stress on some physiological parameters, yield, yield components of durum (Triticum durum desf.) and bread (Triticum aestivum L.) wheat genotypes. Ekin Journal of Crop Breeding and Genetics, Ancara, v. 1, n. 1, p. 50-62.
ANJUM, S. A.; XIE, X. Y.; WANG, L. C.; SALEEM, M. F.; MAN, C.; LEI, W. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, Nairobi, v. 6, n. 9, p. 2026-2032, 2011.
ARJENAKI, F. G.; JABBARI, R.; MORSHEDI, A. Evaluation of drought stress on relative water content, chlorophyll content and mineral elements of wheat (Triticum aestivum L.) varieties. International Journal of Agriculture and Crop Sciences, v. 4, n. 11, p. 726-729, 2012.
BELTRANO, J.; MARTA, G. R. Improved tolerance of wheat plants (Triticum aestivum L.) to drought stress and re-watering by therbuscular mycorrhizal fungus Glomusclaroideum: Effect on growth and cell membrane stability. Brazilian Journal of Plant Physiology, Campinas, v. 20, n. 1, p. 29-37, 2008. DOI: http://dx.doi.org/10.1590/S1677-04202008000100004
DUBOIS, M.; GILLES, K. A.; HAMILTON, J. K.; REBERS, P. T.; SMITH, F. Colorimetric method for determination of sugars and related substances. Analytical chemistry, Washington, v. 28, n. 3, p. 350-356, 1956. DOI: https://dx.doi.org/10.1021/ac60111a017
FAROOQ, M.; HUSSAIN, M.; SIDDIQUE, K. H. Drought stress in wheat during flowering and grain-filling periods. Critical Reviews in Plant Sciences, v. 33, n. 4, p. 331-349, 2014. DOI: https://doi.org/10.1080/07352689.2014.875291
KEYVAN, S., 2010. The effects of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars. Journal of Animal and Plant Sciences, Nairobi, v. 8, n. 3, p. 1051-1060, 2010.
LESSANI H.; MOJTAHEDI M. 2002. Introduction to plant physiology (Translation). 6. ed. Iran: Tehran University press, 2002. 726 p.
LEVITT, J. Stress terminology. In: Turner, N. C.; Kramer P. J. Adaptation of plants to water and high temperature stress. New York: Wiley, 1980. p. 439-473.
LIU, E. K.; MEI, X. R.; YAN, C. R.; GONG, D. Z.; ZHANG, Y. Q. Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE in two winter wheat genotypes. Agricultural Water Management, Amsterdam, v. 167, p. 75-85, 2016. DOI: https://doi.org/10.1016/j.agwat.2015.12.026
IANCULOV, I.; PALICICA, R.; BUTNARIU, M.; DUMBRAVĂ, D.; GERGEN, I. Obţinerea în stare cristalină a clorofilei din cetină de brad (Abies alba) şi de pin (Pinus sylvestris), Revista de Chimie, v. 56, n. 4, p. 441-443, 2005.
MENSAH J. K.; OBADONI, B. O.; EROUTOR P. G.; ONOME-IRIEGUNA, F. 2006. Simulated flooding and drought effects on germination, growth and yield parameters of sesame (Seasamum indicum L.). African Journal of Biotechnology, Nairobi, v. 5, n. 13, p. 1249-1253, 2006.
NADERI, M.; DANESH SHAHRAKI, A. A.; NADERI, R. Application of nanotechnology in the optimization of formulation of chemical fertilizers. Iranian Journal of Nanotechnology, v. 12, p. 16-23, 2011.
NAZARAN, M. H. Chelate compounds. U. S. Patent 8,288,587, 2012.
SCOTT, N.; CHEN, H. 2003. Nanoscale science and engineering for agriculture and food systems. A Report Submitted to Cooperative State Research, Education, and Extension Service, the USDA. National.
WANG, L.; PALTA, J. A.; CHEN, W.; CHEN, Y.; DENG, X. Nitrogen fertilization improved water-use efficiency of winter wheat through increasing water use during vegetative rather than grain filling. Agricultural Water Management, Amsterdam, v. 197, p. 41-53, 2018. DOI: https://doi.org/10.1016/j.agwat.2017.11.010
WU, Z. Z.; YING, Y. Q.; ZHANG, Y. B.; BI, Y. F.; WANG, A. K.; DU, X. H. Alleviation of drought stress in Phyllostachys edulis by N and P application. Scientific reports, London, v. 8, n. 1, p. 228. DOI: https://doi.org/10.1038/s41598-017-18609-y
XU, W.; CUI, K.; XU, A.; NIE, L.; HUANG, J.; PENG, S. Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings. Acta physiologiae plantarum, v. 37, n. 2, p. 9, 2015.
ZAREABYANEH, H.; BAYATVARKESHI, M. Effects of slow-release fertilizers on nitrate leaching, its distribution in soil profile, N-use efficiency, and yield in potato crop. Environmental Earth Sciences, Heidelberg, v. 74, n. 4, p. 3385-3393, 2015.
Descargas
Publicado
Número
Sección
Cómo citar
Licencia
Los derechos de autor de los artículos publicados en esta revista pertenecen al autor, con los derechos de primera publicación de la revista. En virtud de aparecer en esta revista de acceso público, los artículos son de libre uso, con sus propias atribuciones, en aplicaciones educativas y no comerciales.
Los artículos publicados en esta revista pueden ser reproducidos parcialmente o utilizados como referencia por otros autores, siempre que se mencione la fuente, es decir, Revista Nativa.

