Lactobacillus plantarum -  INOCULATED NAPIER GRASS SILAGE ON NUTRIENT DIGESTIBILITY AND RUMEN BACTERIAL POPULATIONS IN SHEEP

Autores/as

DOI:

https://doi.org/10.31413/nat.v13i3.19463


Palabras clave:

fermentation, Neutral detergent fiber, probiotics, ruminant nutrition

Resumen

ABSTRACT: This study aimed to address the optimization of fermentation and digestibility of Napier grass (Pennisetum purpureum Sch.) silage in sheep by evaluating the effects of varying levels (0%, 1%, 2%, 3%, and 4%) of Lactobacillus plantarum as a silage inoculant. A Completely Randomized Design (CRD) with six replications was employed. Sheep were housed in individual metabolic cages, with feed intake, water consumption, and waste output monitored. Rumen fluid and fecal samples were collected for microbial and proximate analysis. Results showed that dry matter digestibility (DMD) did not significantly differ among treatments (p = 0.451), although the 3% L. plantarum group (T3) exhibited the highest DMD (43.83%). Organic matter digestibility (OMD) was significantly affected (p = 0.004), with T3 recording the highest OMD (84.14%). Crude protein digestibility (CPD) showed highly significant differences (p < 0.000), with T3 and T1 achieving the highest CPD values (87.94% and 86.37%, respectively). Neutral detergent fiber digestibility (NDFD) also varied significantly (p = 0.003), with T3 again showing the highest NDFD (54.63%). In terms of rumen fermentation, L. plantarum levels significantly influenced rumen pH (p = 0.027). The initial rumen pH values were similar across groups; however, the final pH values decreased with increasing inoculant levels. The greatest reduction in pH was observed in the T4 (4%) group (9.26% decrease), followed closely by T3 (8.40%). These pH shifts corresponded to changes in rumen bacterial populations. Although initial bacterial counts were statistically similar (p = 0.462), significant reductions in final counts were observed (p = 0.001), with T3 showing the lowest population (2.36 × 10⁷ cfu/mL), indicating a potential for improved microbial modulation at this level. The study concludes that moderate supplementation with Lactobacillus plantarum, particularly at 3%, optimally enhances silage digestibility, maintains beneficial rumen pH levels, and improves microbial balance. Excessive inclusion (4%) may lead to lower fermentation efficiency due to acidic rumen conditions.

Keywords: Pennisetum purpureum Sch.; fermentation; neutral detergent fiber; probiotics; ruminant nutrition; Ovis aries L.

Referencias

AL-ARIF, M. A.; SUWANTI, L. T.; ESTOEPANGESTIE, A. S.; LAMID, M. The nutrients contents, dry matter digestibility, organic matter digestibility, total digestible nutrient, and NH3 rumen production of three kinds of cattle feeding models. KnE Life Sciences, v. 3, n. 6, p. 338, 2017: https://doi.org/10.18502/kls.v3i6.1142.

AN, Y.; LU, W.; LI, W.; PAN, L.; LU, M.; CESARINO, I.; LI, Z.; ZENG, W. Dietary fiber in plant cell walls—the healthy carbohydrates. Food Quality and Safety, v. 6, 2022. https://doi.org/10.1093/fqsafe/fyab037 .

AOAC. Official Methods of Analysis. 15th ed. Arlington: AOAC, 1990.

ASTUTI, W. D.; RIDWAN, R.; FIDRIYANTO, R.; ROHMATUSSOLIHAT, R.; SARI, N. F.; SARWONO, K. A.; FITRI, A.; WIDYASTUTI, Y. Changes in rumen fermentation and bacterial profiles after administering Lactiplantibacillus plantarum as a probiotic. Veterinary World, v. 15, n. 8, p. 1969-1974, 2022. https://doi.org/10.14202/vetworld.2022.1969-1974.

BACH, A.; CALSAMIGLIA, S.; STERN, M. Nitrogen metabolism in the rumen. Journal of Dairy Science, v. 88, p. E9-E21, 2005. https://doi.org/10.3168/jds.s0022-0302(05)73133-7.

BRYANT, M.; BURKEY, L. Cultural methods and some characteristics of some of the more numerous groups of bacteria in the bovine rumen. Journal of Dairy Science, v. 36, n. 3, p. 205-217, 1953. https://doi.org/10.3168/jds.s0022-0302(53)91482-9.

CAMMACK, K. M.; AUSTIN, K. J.; LAMBERSON, W. R.; CONANT, G. C.; CUNNINGHAM, H. C. RUMINANT NUTRITION SYMPOSIUM: Tiny but mighty: the role of the rumen microbes in livestock production. Journal of Animal Science, v. 96, n. 2, p. 752-770, 2018. https://doi.org/10.1093/jas/skx053.

CHARTIER, C.; PARAUD, C. Coccidiosis due to Eimeria in sheep and goats, a review. Small Ruminant Research, v. 103, n. 1, p. 84-92, 2012. https://doi.org/10.1016/j.smallrumres.2011.10.022.

HOBSON, P. N.; STEWART, C. S. The Rumen Microbial Ecosystem. 2. ed. London: Chapman & Hall, 1997.

HOLLAND, C.; RYDEN, P.; EDWARDS, C. H.; GRUNDY, M. M. Plant Cell Walls: Impact on Nutrient Bioaccessibility and Digestibility. Foods (Basel, Switzerland), v. 9, n. 2, p. 201, 2020. https://doi.org/10.3390/foods9020201.

HUNGATE, R. E. The Rumen and Its Microbes. New York: Academic Press, 1966.

JIN, Y.; WANG, P.; LI, F.; YU, M.; DU, J.; ZHAO, T.; YI, Q.; TANG, H.; YUAN, B. The Effects of Lactobacillus plantarum and Lactobacillus buchneri on the Fermentation Quality, In Vitro Digestibility, and Aerobic Stability of Silphium perfoliatum L. Silage. Animals, v. 14, n. 15, p. 2279, 2024. https://doi.org/10.3390/ani14152279.

KADAM, R.; JO, S.; LEE, J.; KHANTHONG, K.; JANG, H.; PARK, J. A review on the Anaerobic Co-Digestion of Livestock manures in the context of Sustainable Waste Management. Energies, v. 17, n. 3, p. 546, 2024. https://doi.org/10.3390/en17030546.

KUNG, L.; SHAVER, R.; GRANT, R.; SCHMIDT, R. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science, v. 101, n. 5, p. 4020-4033, 2018. https://doi.org/10.3168/jds.2017-13909.

LIU, Y.; CHEN, T.; SUN, R.; ZI, X.; LI, M. Effects of Lactobacillus plantarum on Silage Fermentation and Bacterial Community of Three Tropical Forages. Frontiers in Animal Science, v. 3, 2022. https://doi.org/10.3389/fanim.2022.878909.

MALEKO, D.; MWILAWA, A.; MSALYA, G.; PASAPE, L.; MTEI, K. Forage growth, yield and nutritional characteristics of four varieties of napier grass (Pennisetum purpureum Schumach) in the west Usambara highlands, Tanzania. Scientific African, v. 6, e00214, 2019. https://doi.org/10.1016/j.sciaf.2019.e00214.

MAÑA, M. A. T.; NIEPES, R. A.; ABELA, J. V. Feed intake and growth performance of sheep (Ovis aries L.) fed with Napier (Pennisetum purpureum Sch.) silage added with varying levels of L. plantarum as inoculant. Livestock Research for Rural Development, v. 35, artigo #50, 2023. http://www.lrrd.org/lrrd35/6/3550niep.html.

MATTHEWS, C.; CRISPIE, F.; LEWIS, E.; REID, M.; O'TOOLE, P. W.; COTTER, P. D. The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes, v. 10, n. 2, p. 115-132, 2019. https://doi.org/10.1080/19490976.2018.1505176.

MORAN, J. Tropical Dairy Farming: Feeding Management for Small Holder Dairy Farmers in the Humid Tropics. Csiro Publishing, 2005.

MUCK, R.; NADEAU, E.; MCALLISTER, T.; CONTRERAS-GOVEA, F.; SANTOS, M.; KUNG, L. Silage review: Recent advances and future uses of silage additives. Journal of Dairy Science, v. 101, n. 5, p. 3980-4000, 2018. https://doi.org/10.3168/jds.2017-13839.

NRC (NATIONAL RESEARCH COUNCIL). Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids. Washington, DC: The National Academies Press, 2007.

OKOYE, C. O.; WANG, Y.; GAO, L.; WU, Y.; LI, X.; SUN, J.; JIANG, J. The performance of lactic acid bacteria in silage production: A review of modern biotechnology for silage improvement. Microbiological Research, v. 266, 127212, 2022. https://doi.org/10.1016/j.micres.2022.127212. Acesso em:

ØRSKOV, E. R.; MCDONALD, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science, v. 92, n. 2, p. 499-503, 1979. https://doi.org/10.1017/S0021859600063048.

PENG, W.; ZHANG, L.; WEI, M.; WU, B.; XIAO, M.; ZHANG, R.; JU, J.; DONG, C.; DU, L.; ZHENG, Y.; BAO, M.; BAO, H.; BAO, X. Effects of Lactobacillus plantarum (L) and molasses (M) on nutrient composition, aerobic stability, and microflora of alfalfa silage in sandy grasslands. Frontiers in Microbiology, v. 15, 1358085, 2024. https://doi.org/10.3389/fmicb.2024.1358085.

PEREZ, H. G.; STEVENSON, C. K.; LOURENCO, J. M.; CALLAWAY, T. R. Understanding Rumen Microbiology: An Overview. Encyclopedia, v. 4, n. 1, p. 148-157, 2024. https://doi.org/10.3390/encyclopedia4010013. Acesso em:

REN, H.; FENG, Y.; PEI, J.; LI, J.; WANG, Z.; FU, S.; ZHENG, Y.; LI, Z.; PENG, Z. Effects of Lactobacillus plantarum additive and temperature on the ensiling quality and microbial community dynamics of cauliflower leaf silages. Bioresource Technology, v. 307, 123238, 2020. https://doi.org/10.1016/j.biortech.2020.123238.

VAN SOEST, P. J. Nutritional Ecology of the Ruminant. 2. ed. Cornell University Press, 1994.

WEBSTER, J. The Biochemistry of Silage (Second Edition). By P. McDonald, A. R. Henderson and S. J. E. Heron. Marlow, Bucks, UK: Chalcombe Publications, 1991. Experimental Agriculture, v. 28, n. 1, p. 125, 1992. https://doi.org/10.1017/S0014479700023115.

WEIMER, P. J. Degradation of Cellulose and Hemicellulose by Ruminal Microorganisms. Microorganisms, v. 10, n. 12, p. 2345, 2022. https://doi.org/10.3390/microorganisms10122345. Acesso

Descargas

Publicado

2025-08-04

Número

Sección

Zootecnia / Animal Husbandry

Cómo citar

Lactobacillus plantarum -  INOCULATED NAPIER GRASS SILAGE ON NUTRIENT DIGESTIBILITY AND RUMEN BACTERIAL POPULATIONS IN SHEEP. (2025). Nativa, 13(3), 404-412. https://doi.org/10.31413/nat.v13i3.19463

Artículos más leídos del mismo autor/a