ANTITUMOR AND CYTOTOXIC ACTIVITY OF WATERY Citrus maxima L. PEELS EXTRACT

Autores/as

DOI:

https://doi.org/10.31413/nat.v12i4.18243


Palabras clave:

pomelo peels, cytotoxicity, Brain Cancer A172, Pancreas Cancer Capan-2

Resumen

It is now emphasized that phytotherapy could treat many cancer types and provide cancer cells with a targeted, efficient treatment. Additionally, it is employed to address the cancer cells' resistance to chemotherapy. The current research aimed to assess the impact of pomelo peel extract on human brain cancer A172 and human pancreas cancer. Citrus maxima L. pomelo peels were extracted using water, while their phytochemical composition was examined using GC-MS and preliminary phytochemical analysis. Human brain cancer A172 and pancreatic cancer are cytotoxic to pomelo peel extract. Capan-2 cell lines were investigated using the MTT test. A multi-parameter cytotoxic assay was carried out to find the extract action on valid cell count, total nuclear intensity, mitochondrial membrane potential, cell membrane permeability, and cytochrome C release utilizing the HCS test. The results demonstrated the extract's richness in several phytochemical constituent categories, such as phenolics, terpenoids, and alkaloids. MTT assay results indicated that IC50 (994.826 µg mL-1) had no effects on the viability of normal mesenchymal cells, whereas A172 cells (IC50 (265.396 µg mL-1) and Capan-2 cells (IC50 (192.247 µg mL-1) exhibited considerable cytotoxicity. Subsequent analysis of the HCS results revealed notable variations in every parameter examined at concentration levels of 200 and 400 µg mL-1. The extract is a strong antioxidant, rich in many therapeutic phytochemical compounds, and highly toxic to A172 and Capan-2 cells, but Capan-2 cells are more sensitive to the extract. Pomelo peel extract didn’t appear toxic to normal mesenchymal cells (HdFn).

Keywords: pomelo peels; cytotoxicity; Brain Cancer A172; Pancreas Cancer Capan-2.

 

Atividade antitumoral e citotóxica do extrato aquoso da casca de Citrus maxima L.

 

RESUMO: A fitoterapia pode ser usada para tratar muitos tipos de câncer pois pode fornecer às células cancerígenas um tratamento direcionado e eficiente. Além disso, é empregado para tratar a resistência das células cancerígenas à quimioterapia. O objetivo da pesquisa atual foi avaliar o impacto do extrato de cascas de pomelo no câncer cerebral humano A172 e no câncer de pâncreas humano. As cascas de Citrus maxima L. pomelo foram extraídas com água, enquanto sua composição fitoquímica foi examinada por GC-MS, bem como análise fitoquímica preliminar. O câncer cerebral humano A172 e o câncer de pâncreas são citotóxicos para o extrato de cascas de pomelo. Linhas celulares Capan-2 foram investigadas com o uso do teste MTT. Para encontrar a ação do extrato na contagem de células válidas, intensidade nuclear total, potencial de membrana mitocondrial, permeabilidade da membrana celular e liberação de citocromo C utilizando o teste HCS, foi realizado um ensaio citotóxico multiparâmetro. A riqueza do extrato em diversas categorias de constituintes fitoquímicos, como fenólicos, terpenóides e alcalóides, foi demonstrada pelos resultados. Os resultados do ensaio MTT indicaram que IC50 (994,826 µg mL-1) não teve efeitos na viabilidade de células mesenquimais normais, enquanto células A172 (IC50 (265,396 µg mL-1) e células Capan-2 (IC50 (192,247 µg mL-1) exibiram considerável citotoxicidade. A análise subsequente dos resultados do HCS revelou variações notáveis ​​em todos os parâmetros examinados a níveis de concentração de 200 e 400 µg mL-1. O extrato tem sido um forte antioxidante, rico em muitos compostos fitoquímicos terapêuticos e apresenta alta toxicidade para células A172 e células Capan -2, mas as células Capan-2 foram mais sensíveis ao extrato. O extrato de cascas de pomelo não apresentou toxicidade para as células mesenquimais normais (HdFn.)

Palavras-chave: cascas de pomelo; citotoxicidade; câncer cerebral A172; câncer de pâncreas Capan-2.

Referencias

ABRAHAM, V.; TOWNE, J.; WARING, U.; URNS, D. Application of a high-content multiparameter cytotoxicity assay to prioritize compounds based on toxicity potential in human. SLAS Discorevy, v. 13, n. 6, p. 527-537, 2008. https://doi.org/10.1177/1087057108318428

ARBAB, M.; SHEN, M. W.; MOK, B.; WILSON, C.; MATUSZEK, Ż.; CASSA, C. A.; LIU, D. R. Determinants of base editing outcomes from target library analysis and machine learning. Cell, v. 182, n. 2, p. 463-480, 2013. https://doi.org/10.1016/j.cell.2020.05.03

ASHWIN, R.; BALAMURUGAN, P.; PRASAD, M. P. Comparative phytochemical analysis of Rutaceae Family (Citrus Species) Extracts. International Journal of Scientific Research, v. 3, n. 4, p. 148-150, 2024.

ASIF, A.; KAMRUNNESSA, M.; MAHMUDUR, R.; ANNANYA, K. Extraction and evaluation of phytochemicals from banana peels (Musa sapientum) AND banana plants (Musa paradisiaca). Malaysian Journal of Halal Research Journal, v. 2, n. 1, p. 22-26, 2019. https://doi.org/10.2478/mjhr-2019-0005

ATHIRA, U. Evaluation of carbohydrate and phenol content of citrus fruits species. International Journal of Applied Research in Natural Products, v. 3, n. 9, p. 160-164, 2017.

BANDARNAYAKE, W. M. Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wetlands Ecological Management, v. 10, p. 421-452, 2002. https://doi.org/10.1023/A:1021397624349

CARDILE, A. C.; GRAZIANO, A.; VENDITTI, V. Clinical evaluation of Moro (Citrus sinensis (L.) Osbeck) orange juice supplementation for the weight management. Natural Product Research, v. 29, n. 23, p. 2256-2260, 2015. https://doi.org/10.1080/14786419.2014.1000897

EKPENYONG, C. E.; AKPAN, E. E.; UDOH, N. S. Phytochemistry and toxicity studies of Telfairia Occidentalis aqueous leaves extract on liver biochemical indices in Wistar rats. American Journal of Medicine and Medical Sciences, v. 2, n. 5, p. 103-110, 2012. https://doi.org/10.5923/j.ajmms.20120205.03

GINOVYAN, M.; PETROSYAN, M.; TRCHOUNIAN, A. Antimicrobial activity of some plant materials used in Armenian traditional medicine. BMC Complementary and Alternative Medicine, v. 17, n. 1, e50, 2017. https://doi.org/10.1186/s12906-017-1573-y

GOLDSTEIN, J. Causality and emergence in chaos and complexity theories. In: SULIS, W.; COMBS, A. (Eds.), Nonlinear Dynamics in Human Behavior. Singapore: World Scientific Publishing, 2000. p. 161-190. (Studies of Nonlinear Phenomena in Life Sciences, v. 5)

HAFIDH, S. Z.; HUSSEIN, M. Q.; MALALLAH, A. S.; ABDULAMIR, F.; ABU BAKAR, R. R. A high-throughput quantitative expression analysis of cancer-related genes in human HepG2 cells in response to limonene, a potential anticancer agent Curr. Current Cancer Drug Targets, v. 18, n. 3, p. 807-815, 2018. https://doi.org/10.2174/1568009617666171114144236

HE, W; LI, X.; PENG, Y.; HE, X.; PAN, S. Anti-oxidant and anti-melanogenic properties of essential oil from peel of pomelo cv. Guan Xi. Molecules, v. 24, n. 2, e242, 2019. https://doi.org/10.3390/molecules24020242

HE, Y.; SHAN, Y.; WU, G.; LIU, B.; CHEN, S. Yao Simultaneous determination of flavanones, hydroxycinnamic acids and alkaloids in citrus fruits by HPLC-DAD-ESI/MS. Food Chemistry, v. 127, n. 2, p. 880-885, 2011. https://doi.org/10.1016/j.foodchem.2010.12.109

IDAN, S. A.; AL-MARZOQI, A. H.; HAMEED, I. H. Spectral analysis and antibacterial activity of methanolic fruit extract of Citrullus colocynthis using gas chromatographymass spectrometry. African Journal of Biotechnology, v. 14, n. 46, p. 3131-3158, 2015.

JAMALZADEH, L.; GHAFOORI, H.; AGHAMAALI, M.; SARIRI, R. Induction of apoptosis in human breast cancer MCF-7 cells by a semisynthetic derivative of artemisinin: A caspase-related mechanism. Iranian Journal of Biotechnology, v. 15, n. 3, p. 157-65, 2017. https://doi.org/10.15171/ijb.1567

KHAN, N. H.; QIAN, C. J.; PERVEEN, N. Phytochemical screening, antimicrobial and antioxidant activity determination of citrus maxima peel. Pharmacy & Pharmacology International Journal, v. 6, n. 4, p. 279-285, 2018. https://doi.org/10.15406/ppij.2018.06.00187

KUNDUSEN, S..; GUPTA, M.; MAZUMDER, U. K.; HALDAR, P. K. Exploration of anti-inflammatory potential of Citrus limetta (Risso) and Citrus maxima (J. Burm. Merr). Pharmacology Online, v. 1, p. 702-709, 2011.

LI, Y.; DUAN, S.; JIA, H.; BAI, C.; ZHANG, L.; WANG, Z. Flavonoids from tartary buckwheat induce G2/M cell cycle arrest and apoptosis in human hepatoma HepG2 cells. Acta Biochimica et Biophysica Sinica, v. 46, p. 460-70, 2014. https://doi.org/10.1093/abbs/gmu023

MOH, A. A.; SITI, M. 2024. Chemical content and pharmacology of pomelo orange (Citrus maxima) fruit peel: a review. E3S Web Conferences, v. 481, e06004, 2024. https://doi.org/10.1051/e3sconf/202448106004

PATRA, J. K.; MAHOPATRA, A. D.; RATH, S. K.; DHAL, N. K.; THATOI, H. Screening of antioxidant and antifilarial activity of leaf extracts of Excoecaria agallocha L. International Journal of Interactive Biology, v. 7, n. 1, p. 9-15, 2009.

SAWANT, T. A.; PANHEKAR, D. A brief review on recent advances of Citrus maxima (Chakota). International Journal of Recent Scientific Research, v. 8, n. 8, p. 19400-19416, 2017.

PROKHOROVA, E.; AGNEW, T.; WONDISFORD, A. R.; TELLIER, M.; KAMINSKI, N.; BEIJER, D.; HOLDER, J.; GROSLAMBERT, J.; SUSKIEWICZ, M. J.; ZHU, K.; REBER, J. M.; KRASSNIG, S. C.; PALAZZO, L.; MURPHY, S.; NIELSEN, M. L.; MANGERICH, A.; AHEL, D.; BAETS, J.; O'SULLIVAN, R. J.; AHEL, I. Unrestrained poly-ADP-ribosylation provides insights into chromatin regulation and human disease. Molecular Cell, v. 81, p. 2640-2655, 2015. https://doi.org/10.1016/j.molcel.2021.04.028

QAISAR, N.; CHAUDHARY, B. A.; DASTI, A.; MALIK, A.; ZAFAR, R. Phytochemical study of aerial parts of Lantana Camara for the pharmacologically active compounds. Journal of Materials And Method: Test, v. 1, n. 1, p. 19-26, 2009.

SAID, A. A.; EL GENDY, M. A. M.; ABDEL RAOOF, G. F.; OMER, E. A.; FOUAD, R.; ABD EL-KADER, A. E.; WEINFELD, M. Cytotoxic activity and volatile components of peel oil of Citrus volkameriana. South African Journal of Botany, v. 127, p. 201-207, 2019. https://doi.org/10.1016/j.sajb.2019.09.005

SAPKOTA, B.; DEVKOTA, H. P.; POUDEL, P. Citrus maxima (Brum.) Merr. (Rutaceae): bioactive chemical constituents and pharmacological activities. Evidence-Based Complementary and Alternative Medicine, v. 30, e8741669, 2022. https://doi.org/10.1155/2022/8741669

SEKI, A.; RUTZ, S. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. Journal of Experimental Medicine, v. 215, n. 3, p. 985-997, 2018. https://doi.org/10.1084/jem.20171626

POULOSE, S. M.; HARRIS, E. D.; PATIL, B. S. Citrus limonoids induce apoptosis in human neuroblastoma cells and have radical scavenging activity. Journal of Nutrition v. 135, n. 4, p. 870-877, 2005.

SINGH, A. Citrus maxima (Burm.) Merr. a traditional medicine: its antimicrobial potential and pharmacological update for commercial exploitation in herbal drugs - review. International Journal of ChemTech Research, v. 10, n. 7, p. 24-28, 2017.

SINGH, A.; NAVNEET, N. Evaluation of antimicrobial potential and phytochemical assessment of Citrus maxima burm. seeds extracts against respiratory tract pathogens. New York Science Journal.; v. 9, n. 4, p. 45-49, 2016

SINGH, R. Medicinal plants: A review. Journal of Plant Sciences, v. 3, n. 1, p. 50-55, 2015. https://doi.org/10.11648/j.jps.s.2015030101.18

SMAOUI, S.; HLIMA, H. B.; MTIBAA, A. C.; FOURATI, M.; SELLEM, I.; ELHADEF, K.; ENNOURI, K.; MELLOULI, L. Pomegranate peel as phenolic compounds source: Advanced analytical strategies and practical use in meat products. Meat Science, v. e107914, 2019. https://doi.org/10.1016/j.meatsci.2019.107914

SUN, W.; TAO, H.; HUANG, X.; YE, P. Sun Flavonoids, phenolic acids, carotenoids and antioxidant activity of fresh eating citrus fruits, using the coupled in vitro digestion and human intestinal HepG2 cells model. Food Chemistry, v. 279, p. 321-327, 2019. https://doi.org/10.1016/j.foodchem.2018.12.019

TAHSIN, J. D.; WANSI, A.; AL-GROSHI, A.; EVANS, L.; NAHAR, C.; MARTIN, S. D.; SARKER, T. Cytotoxic properties of the stem bark of Citrus reticulata Blanco (Rutaceae). Phytotherapy Research, v. 31, n. 2, p. 1215-1219, 2017. https://doi.org/10.1002/ptr.5842

TENIENTE, S. L.; FLORES-GALLEGOS, A. C.; ESPARZA-GONZÁLEZ, S. C.; CAMPOS-MÚZQUIZ, L. G.; NERY-FLORES, S. D.; RODRÍGUEZ-HERRERA, R. Anticancer effect of pomegranate peel polyphenols against cervical cancer. Antioxidants, v. 12, n. 1, e127, 2023. https://doi.org/10.3390/antiox12010127

THAVANAPONG, N.; WETWITAYAKLUNG, P.; CHAROENTEERABOON, J. Comparison of essential oils compositions of Citrus maxima Merr. peel obtained by cold press and vacuum stream distillation methods and of its peel and flower extract obtained by supercritical carbon dioxide extraction method and their antimicrobial activity. Journal of Essential Oil Research, v.22, n. 1, p. 71-77, 2010. https://doi.org/10.1080/10412905.2010.9700268

TRANCHIDA, I.; BONACCORSI, P.; DUGO, L.; MONDELLO, G.; DUGO, P. Q.. Analysis of Citrus essential oils: state of the art and future perspectives. A review. Flavour and Fragrance Journal, v. 27, n. 2, p. 98-123, 2012. https://doi.org/10.1002/ffj.2089

VISALLI, G.; FERLAZZO, N.; CIRMI, S.; CAMPIGLIA, P.; GANGEMI, S.; DI PIETRO, A.; CALAPAI, G.; NAVARRA, M. Bergamot juice extract inhibits proliferation by inducing apoptosis in human colon cancer cells. Anti-Cancer Agents in Medicinal Chemistry, v. 14, n. 10, p. 1402-1413, 2014. https://doi.org/10.2174/1871520614666140829120530

VIJAYALAKSHMI, P.; RADHA, R. Pharmacognostical and phytochemical screening of the peels of Citrus maxima. Research Journal of Pharmacognosy & Phytochemistry, v. 8, n. 1, p. 25-31, 2016. https://doi.org/10.5958/0975-4385.2016.00006.6

YUAN, Y.; ZHAO, Y.; XIN, S.; WU, N.; WEN, J.; LI, S.; CHEN, L.; WEI, Y.; YANG, H.; LIN, S. A Novel PEGylated Liposome-Encapsulated SANT75 suppresses tumor growth through inhibiting hedgehog signaling pathway. PLoS ONE v. 8, n. 4, e60266, 2013. https://doi.org/10.1371/journal.pone.0060266

ZHANG, E. T.; HE, Y.; GROB, P.; FONG, Y. W.; NOGALES, E.; TJIAN, R. Architecture of the human XPC DNA repair and stem cell coactivator complex. Proceedings of the National Academy of Sciences, v. 112, n. 48, p. 14817-14822, 2015. https://doi.org/10.1073/pnas.152010411

Descargas

Publicado

2024-12-13

Número

Sección

Bioprospecção e Biotecnologia / Bioprospecting and Biotechnology

Cómo citar

ANTITUMOR AND CYTOTOXIC ACTIVITY OF WATERY Citrus maxima L. PEELS EXTRACT . (2024). Nativa, 12(4), 785-794. https://doi.org/10.31413/nat.v12i4.18243

Artículos más leídos del mismo autor/a