GENERACIÓN DE BIOGÁS Y ENERGÍA TÉRMICA EN LA AGROINDUSTRIA BOLO DAS OLIVEIRAS, POMBAL, PARAÍBA, BRASIL
DOI:
https://doi.org/10.31413/nativa.v11i1.14583Palabras clave:
biodigestor, efluente, metanoResumen
Este estudio tuvo como objetivo evaluar el potencial de generación de energía térmica a partir del biogás producido por un biodigestor rural en Agroindústria Bolo das Oliveiras, Pombal/PB, Brasil. El digestor se alimentó cada dos días con 0,30 m3 de biomasa (mezcla de agua y estiércol vacuno), tiempo de retención hidráulica de 45 días. Se recolectaron muestras de afluentes y efluentes cada 15 días durante 75 días. El afluente presentó mayor contenido de sólidos (p < 0.05) que el efluente. La mayor concentración de oxígeno disuelto (6,67 mg L−1) se observó en el afluente. El efluente mostró menor alcalinidad total (p < 0.05) que el afluente en todos los tiempos de muestreo. Los valores de CH4 fueron superiores a los valores de CO2 durante todo el experimento. El biogás también contenía trazas de H2S y NH3 (2/3 y 1/3 ppMV, respectivamente). Las emisiones de CH4 se estimaron en 10,58 m3 día−1. El CH4 fue el componente principal del biogás, como lo indica el comportamiento de combustión de la llama. La generación de biogás y energía térmica en Agroindústria Bolo das Oliveiras puede ser económicamente viable, proporcionando un ahorro mínimo mensual de R$ 1.582,00.
Referencias
ANDRIAMANOHIARISOAMANANA, F. J.; SAIKAWA, A.; TARUKAWA, K.; QI, G.; PAN, Z.; YAMASHIRO, T.; IWASAKI, M.; IHARA, I.; NISHIDA, T.; UMETSU, K. Anaerobic codigestion of dairy manure, meat and bone meal, and crude glycerol under mesophilic conditions: synergistic effect and kinetic studies. Energy for Sustainable Development, v. 40, p. 11-18, 2017. https://doi.org/10.1016/j.esd.2017.05.008
ARELLI, V.; BEGUM, S.; ANUPOJU, G. R.; KURUTI, K.; SHAILAJA, S. Dry anaerobic co-digestion of food waste and cattle manure: Impact of total solids, substrate ratio and thermal pre treatment on methane yield and quality of biomanure. Bioresource Technology, v. 253, p. 273-280, 2018. https://doi.org/10.1016/j.biortech.2018.01.050
BRAZIL. Ministry of Agriculture. Agricultural and Livestock Plan. Secretary of Agricultural Policy. Agricultural and Livestock Plan 2018-2019, 2019. Available at: <http://www.agricultura.gov.br/assuntos/politica-agricola/plano-agricola-e-pecuario>
CALZA, L. F.; LIMA, C. B.; NOGUEIRA, C. E. C.; SIQUEIRA, J. A. C.; SANTOS, R. F. Cost assessment of biodigester implementation and biogas-produced energy. Journal of the Brazilian Association of Agricultural Engineering, v. 35, n. 6, p. 990-997, 2015. http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v35n6p990-997/2015
CAMPOS, C. M. M.; PRADO, M. A. C.; PEREIRA, E. L. Anaerobic digestion of wastewater from coffee and chemical analysis of biogas produced using gas chromatography: quantification of methane, and potential energy gas exchanger. Bioscience Journal, v. 29, n. 3, p. 570-581, 2013.
COLATTO, L.; LANGER M. Biodigestor - solid livestock waste for energy production. Unoesc & Ciência – ACET, v. 2, n. 2, p. 119-128, 2011.
FARHAT, A.; MILADI, B.; HAMDI, M.; BOUALLAGUI, H. Fermentative hydrogen and methane co-production from anaerobic co-digestion of organic wastes at high loading rate coupling continuously and sequencing batch digesters. Environmental Science and Pollution Research, v. 25, n. 28, p. 27945-27958, 2018. https://doi.org/10.1007/s11356-018-2796-2
GARDONI, R. A. P.; AZEVEDO, M. A. Study of the biodegradation of poultry carcasses through the composting process in closed discontinuous biodigesters. Revista Engenharia Sanitária, v. 24, n. 3, p. 425-429, 2019. https://doi.org/10.1590/s1413-41522019118916
GUIMARÃES, C. S.; MAIA, D. R.; SERRA, E. G. Construction of biodigesters to optimize the production of biogas from anaerobic co-digestion of food waste and sewage. Energies, v. 11, n. 4, p. 1-10, 2018. https://doi.org/10.3390/en11040870
HASSANEEN, F. Y.; ABDALLAH, M. S.; AHMED, N.; TAHA, M. M.; ELAZIZ, S. M. M. A.; EL-MOKHTAR, M. A.; BADARY, M. S.; ALLAM, N. K. Innovative nanocomposite formulations for enhancing biogas and biofertilizers production from anaerobic digestion of organic waste. Bioresource Technology, v. 309, e123350, 2020. https://doi.org/10.1016/j.biortech.2020.123350
IBGE. Instituto Brasileiro de Geografia e Estatística. Population, 2019. Available at:<https://cidades.ibge.gov.br/brasil/pb/pombal/panorama>.
JANKE, L.; WEINRICH, S.; LEITE, A. F.; STRAUBER, H.; RADETSKI, C. M.; NIKOLAUSZ, M.; NELLES, M.; STINNER, W. Year-round biogas production in sugarcane biorefineries: Process stability, optimization and performance of a two-stage reactor system. Energy Conversion and Management, v. 168, p. 188-199, 2018. https://doi.org/10.1016/j.enconman.2018.04.101
KUNZ, A.; SULZBACH, A. Portable Biogas Kit: For analyzing the concentration of methane gas, carbon dioxide, ammonia and hydrogen sulphide in biogas. KUNZ, A. [et al.]. Brazil. Patent 012070001117. 09 Oct. 2007. Available at: <https://gru.inpi.gov.br/pePI/jsp/patentes/PatenteSearchBasico.jsp>
LEITE, W.; MAFFAZZIOLI, E.; GUIMARÃES, L.; MAGO, A. D.; BELLI FILHO, P. Comparison of organic loading rate and hydraulic retention time effects on the mesophilic anaerobic digestion of thickened waste activated sludge. Engenharia Sanitária e Ambiental, v. 20, n. 4, p. 581-588, 2015. http://dx.doi.org/10.1590/S1413-41522015020040105625
MARIO, J. S.; COELHO, M. A. A.; SCHAEFFER, L.; ROSSINI, E. G. Preliminary study for compression of biogas in cylinders for domestic consumption. Revista Espacios, v. 36, n. 6, p. 1-11, 2015.
MCVOITTE, W. P. A.; CLARK, O. G. The effects of temperature and duration of thermal pretreatment on the solid-state anaerobic digestion of dairy cow manure. Heliyon, v. 5, e02140, 2019. https://doi.org/10.1016/j.heliyon.2019.e02140
MONLAU, F.; SAMBUSITI, C.; FICARA, E.; ABOULKAS, A.; BARAKAT, A.; CARRERE, H. New opportunities for agricultural digestate valorization: current situation and perspectives. Energy & Environmental Science, v. 9, p. 2600-2621, 2015. https://doi.org/10.1039/C5EE01633A
ORRICO, A. C. A.; LOPES, W. R. T.; MANARELLI, D. M.; ORRICO JUNIOR, M. A. P.; SUNADA, N. S. Anaerobic co-digestion of dairy cattle manure and waste oil. Journal of the Brazilian Association of Agricultural Engineering, v. 36, n. 3, p. 537-545, 2016.
PANYAPING, K.; MOONTEE, P. Potential of biogas production from mixed leaf and food waste in anaerobic reactors. Journal of Material Cycles and Waste Management, v. 20, p. 723-737, 2017. http://dx.doi.org/10.1007/s10163-017-0629-x
PIÑAS, J. A. V.; VENTURINI, O. J.; LORA, E. E. S.; ROALCABA, O. D. C. Technical assessment of mono-digestion and co-digestion systems for the production of biogas from anaerobic digestion in Brazil. Renewable Energy, v. 117, p. 447-458, 2018. https://doi.org/10.1016/j.renene.2017.10.085
BAIRD, R.; EATON, A.; RICE, E.; BRIDGERWATER, L. Standard methods for the examination of water and wastewater. 24 ed. New York: American Public Health Association, 2023. 1624p.
RIOS, M.; KALTSCHMITT, M. Electricity generation potential from biogas produced from organic waste in Mexico. Renewable and Sustainable Energy Reviews, v. 54, p. 384-395, 2016. https://doi.org/10.1016/j.rser.2015.10.033
ROSLI, N. S.; IDRUS, S.; DAUD, N.; AHSAN, A. Assessment of potential biogas production from rice straw leachate in upflow anaerobic sludge blanket reactor. International Journal of Smart Grid and Clean Energy, v. 5, n. 3, p. 135-143, 2016. http://dx.doi.org/10.12720/sgce.5.3.135-143
RIBEIRO FILHO, J. C.; PALÁCIO, H. A. Q.; ANDRADE, E. M.; SANTOS, J. C. N.; BRASIL, J. B. Rainfall characterization and sedimentological responses of watersheds with different land uses to precipitation in the semiarid region of Brazil. Revista Caatinga, v. 30, n. 2, p. 468-478, 2017. https://doi.org/10.1590/1983-21252017v30n222rc
SAADY, N. M. C.; MASSÉ, D. I. High rate psychrophilic anaerobic digestion of high solids (35%) dairy manure in sequence batch reactor. Bioresource Technology, v. 186, p. 74-80, 2015. https://doi.org/10.1016/j.biortech.2015.03.038
SANTOS, I. F. S.; VIEIRA, N. D. B.; NÓBREGA, L. G. B.; BARROS, R. M.; TIAGO FILHO, G. L. Assessment of potential biogas production from multiple organic wastes in Brazil: Impact on energy generation, use, and emissions abatement. Resources, Conservation and Recycling, v. 131, p. 54-63, 2018. https://doi.org/10.1016/j.resconrec.2017.12.012
SGANZERLA, E. Biodigestor: a solution. Porto Alegre: Agriculture, 1983. 88p.
SILVA, F. A. Z.; AZEVEDO, C. A.V. The assistat software version 7.7 and its use in the analysis of experimental data. African Journal of Agricultural Research, v. 11, n. 39, p. 3733-3740, 2016. https://doi.org/10.5897/AJAR2016.11522
SIMM, S.; ORRICO, A. C. A.; ORRICO JUNIOR, M. A. P.; SUNADA, N. S.; SCHWINGEL, A. W.; COSTA, M. S. S. M. Crude glycerin in anaerobic co-digestion of dairy cattle manure increases methane production. Scientia Agricola, v. 74, n. 3, p. 175-179, 2016. https://doi.org/10.1590/1678-992x-2016-0057
XIAO, B.; ZHANG, W.; WU, J.; QIANG, H.; LIU, J.; LI, Y. Temperature-phased anaerobic digestion of food waste: A comparison with single-stage digestions based on performance and energy balance. Bioresource Technology, v. 249, p. 826-834, 2018. http://dx.doi.org/10.1016/j.biortech.2017.10.084
Descargas
Publicado
Versiones
- 2024-06-11 (2)
- 2023-04-13 (1)
Número
Sección
Cómo citar
Licencia
Derechos de autor 2023 Nativa

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los derechos de autor de los artículos publicados en esta revista pertenecen al autor, con los derechos de primera publicación de la revista. En virtud de aparecer en esta revista de acceso público, los artículos son de libre uso, con sus propias atribuciones, en aplicaciones educativas y no comerciales.
Los artículos publicados en esta revista pueden ser reproducidos parcialmente o utilizados como referencia por otros autores, siempre que se mencione la fuente, es decir, Revista Nativa.

