GENERACIÓN DE BIOGÁS Y ENERGÍA TÉRMICA EN LA AGROINDUSTRIA BOLO DAS OLIVEIRAS, POMBAL, PARAÍBA, BRASIL

Autores/as

DOI:

https://doi.org/10.31413/nativa.v11i1.14583


Palabras clave:

biodigestor, efluente, metano

Resumen

Este estudio tuvo como objetivo evaluar el potencial de generación de energía térmica a partir del biogás producido por un biodigestor rural en Agroindústria Bolo das Oliveiras, Pombal/PB, Brasil. El digestor se alimentó cada dos días con 0,30 m3 de biomasa (mezcla de agua y estiércol vacuno), tiempo de retención hidráulica de 45 días. Se recolectaron muestras de afluentes y efluentes cada 15 días durante 75 días. El afluente presentó mayor contenido de sólidos (p < 0.05) que el efluente. La mayor concentración de oxígeno disuelto (6,67 mg L−1) se observó en el afluente. El efluente mostró menor alcalinidad total (p < 0.05) que el afluente en todos los tiempos de muestreo. Los valores de CH4 fueron superiores a los valores de CO2 durante todo el experimento. El biogás también contenía trazas de H2S y NH3 (2/3 y 1/3 ppMV, respectivamente). Las emisiones de CH4 se estimaron en 10,58 m3 día−1. El CH4 fue el componente principal del biogás, como lo indica el comportamiento de combustión de la llama. La generación de biogás y energía térmica en Agroindústria Bolo das Oliveiras puede ser económicamente viable, proporcionando un ahorro mínimo mensual de R$ 1.582,00.

Referencias

ANDRIAMANOHIARISOAMANANA, F. J.; SAIKAWA, A.; TARUKAWA, K.; QI, G.; PAN, Z.; YAMASHIRO, T.; IWASAKI, M.; IHARA, I.; NISHIDA, T.; UMETSU, K. Anaerobic codigestion of dairy manure, meat and bone meal, and crude glycerol under mesophilic conditions: synergistic effect and kinetic studies. Energy for Sustainable Development, v. 40, p. 11-18, 2017. https://doi.org/10.1016/j.esd.2017.05.008

ARELLI, V.; BEGUM, S.; ANUPOJU, G. R.; KURUTI, K.; SHAILAJA, S. Dry anaerobic co-digestion of food waste and cattle manure: Impact of total solids, substrate ratio and thermal pre treatment on methane yield and quality of biomanure. Bioresource Technology, v. 253, p. 273-280, 2018. https://doi.org/10.1016/j.biortech.2018.01.050

BRAZIL. Ministry of Agriculture. Agricultural and Livestock Plan. Secretary of Agricultural Policy. Agricultural and Livestock Plan 2018-2019, 2019. Available at: <http://www.agricultura.gov.br/assuntos/politica-agricola/plano-agricola-e-pecuario>

CALZA, L. F.; LIMA, C. B.; NOGUEIRA, C. E. C.; SIQUEIRA, J. A. C.; SANTOS, R. F. Cost assessment of biodigester implementation and biogas-produced energy. Journal of the Brazilian Association of Agricultural Engineering, v. 35, n. 6, p. 990-997, 2015. http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v35n6p990-997/2015

CAMPOS, C. M. M.; PRADO, M. A. C.; PEREIRA, E. L. Anaerobic digestion of wastewater from coffee and chemical analysis of biogas produced using gas chromatography: quantification of methane, and potential energy gas exchanger. Bioscience Journal, v. 29, n. 3, p. 570-581, 2013.

COLATTO, L.; LANGER M. Biodigestor - solid livestock waste for energy production. Unoesc & Ciência – ACET, v. 2, n. 2, p. 119-128, 2011.

FARHAT, A.; MILADI, B.; HAMDI, M.; BOUALLAGUI, H. Fermentative hydrogen and methane co-production from anaerobic co-digestion of organic wastes at high loading rate coupling continuously and sequencing batch digesters. Environmental Science and Pollution Research, v. 25, n. 28, p. 27945-27958, 2018. https://doi.org/10.1007/s11356-018-2796-2

GARDONI, R. A. P.; AZEVEDO, M. A. Study of the biodegradation of poultry carcasses through the composting process in closed discontinuous biodigesters. Revista Engenharia Sanitária, v. 24, n. 3, p. 425-429, 2019. https://doi.org/10.1590/s1413-41522019118916

GUIMARÃES, C. S.; MAIA, D. R.; SERRA, E. G. Construction of biodigesters to optimize the production of biogas from anaerobic co-digestion of food waste and sewage. Energies, v. 11, n. 4, p. 1-10, 2018. https://doi.org/10.3390/en11040870

HASSANEEN, F. Y.; ABDALLAH, M. S.; AHMED, N.; TAHA, M. M.; ELAZIZ, S. M. M. A.; EL-MOKHTAR, M. A.; BADARY, M. S.; ALLAM, N. K. Innovative nanocomposite formulations for enhancing biogas and biofertilizers production from anaerobic digestion of organic waste. Bioresource Technology, v. 309, e123350, 2020. https://doi.org/10.1016/j.biortech.2020.123350

IBGE. Instituto Brasileiro de Geografia e Estatística. Population, 2019. Available at:<https://cidades.ibge.gov.br/brasil/pb/pombal/panorama>.

JANKE, L.; WEINRICH, S.; LEITE, A. F.; STRAUBER, H.; RADETSKI, C. M.; NIKOLAUSZ, M.; NELLES, M.; STINNER, W. Year-round biogas production in sugarcane biorefineries: Process stability, optimization and performance of a two-stage reactor system. Energy Conversion and Management, v. 168, p. 188-199, 2018. https://doi.org/10.1016/j.enconman.2018.04.101

KUNZ, A.; SULZBACH, A. Portable Biogas Kit: For analyzing the concentration of methane gas, carbon dioxide, ammonia and hydrogen sulphide in biogas. KUNZ, A. [et al.]. Brazil. Patent 012070001117. 09 Oct. 2007. Available at: <https://gru.inpi.gov.br/pePI/jsp/patentes/PatenteSearchBasico.jsp>

LEITE, W.; MAFFAZZIOLI, E.; GUIMARÃES, L.; MAGO, A. D.; BELLI FILHO, P. Comparison of organic loading rate and hydraulic retention time effects on the mesophilic anaerobic digestion of thickened waste activated sludge. Engenharia Sanitária e Ambiental, v. 20, n. 4, p. 581-588, 2015. http://dx.doi.org/10.1590/S1413-41522015020040105625

MARIO, J. S.; COELHO, M. A. A.; SCHAEFFER, L.; ROSSINI, E. G. Preliminary study for compression of biogas in cylinders for domestic consumption. Revista Espacios, v. 36, n. 6, p. 1-11, 2015.

MCVOITTE, W. P. A.; CLARK, O. G. The effects of temperature and duration of thermal pretreatment on the solid-state anaerobic digestion of dairy cow manure. Heliyon, v. 5, e02140, 2019. https://doi.org/10.1016/j.heliyon.2019.e02140

MONLAU, F.; SAMBUSITI, C.; FICARA, E.; ABOULKAS, A.; BARAKAT, A.; CARRERE, H. New opportunities for agricultural digestate valorization: current situation and perspectives. Energy & Environmental Science, v. 9, p. 2600-2621, 2015. https://doi.org/10.1039/C5EE01633A

ORRICO, A. C. A.; LOPES, W. R. T.; MANARELLI, D. M.; ORRICO JUNIOR, M. A. P.; SUNADA, N. S. Anaerobic co-digestion of dairy cattle manure and waste oil. Journal of the Brazilian Association of Agricultural Engineering, v. 36, n. 3, p. 537-545, 2016.

PANYAPING, K.; MOONTEE, P. Potential of biogas production from mixed leaf and food waste in anaerobic reactors. Journal of Material Cycles and Waste Management, v. 20, p. 723-737, 2017. http://dx.doi.org/10.1007/s10163-017-0629-x

PIÑAS, J. A. V.; VENTURINI, O. J.; LORA, E. E. S.; ROALCABA, O. D. C. Technical assessment of mono-digestion and co-digestion systems for the production of biogas from anaerobic digestion in Brazil. Renewable Energy, v. 117, p. 447-458, 2018. https://doi.org/10.1016/j.renene.2017.10.085

BAIRD, R.; EATON, A.; RICE, E.; BRIDGERWATER, L. Standard methods for the examination of water and wastewater. 24 ed. New York: American Public Health Association, 2023. 1624p.

RIOS, M.; KALTSCHMITT, M. Electricity generation potential from biogas produced from organic waste in Mexico. Renewable and Sustainable Energy Reviews, v. 54, p. 384-395, 2016. https://doi.org/10.1016/j.rser.2015.10.033

ROSLI, N. S.; IDRUS, S.; DAUD, N.; AHSAN, A. Assessment of potential biogas production from rice straw leachate in upflow anaerobic sludge blanket reactor. International Journal of Smart Grid and Clean Energy, v. 5, n. 3, p. 135-143, 2016. http://dx.doi.org/10.12720/sgce.5.3.135-143

RIBEIRO FILHO, J. C.; PALÁCIO, H. A. Q.; ANDRADE, E. M.; SANTOS, J. C. N.; BRASIL, J. B. Rainfall characterization and sedimentological responses of watersheds with different land uses to precipitation in the semiarid region of Brazil. Revista Caatinga, v. 30, n. 2, p. 468-478, 2017. https://doi.org/10.1590/1983-21252017v30n222rc

SAADY, N. M. C.; MASSÉ, D. I. High rate psychrophilic anaerobic digestion of high solids (35%) dairy manure in sequence batch reactor. Bioresource Technology, v. 186, p. 74-80, 2015. https://doi.org/10.1016/j.biortech.2015.03.038

SANTOS, I. F. S.; VIEIRA, N. D. B.; NÓBREGA, L. G. B.; BARROS, R. M.; TIAGO FILHO, G. L. Assessment of potential biogas production from multiple organic wastes in Brazil: Impact on energy generation, use, and emissions abatement. Resources, Conservation and Recycling, v. 131, p. 54-63, 2018. https://doi.org/10.1016/j.resconrec.2017.12.012

SGANZERLA, E. Biodigestor: a solution. Porto Alegre: Agriculture, 1983. 88p.

SILVA, F. A. Z.; AZEVEDO, C. A.V. The assistat software version 7.7 and its use in the analysis of experimental data. African Journal of Agricultural Research, v. 11, n. 39, p. 3733-3740, 2016. https://doi.org/10.5897/AJAR2016.11522

SIMM, S.; ORRICO, A. C. A.; ORRICO JUNIOR, M. A. P.; SUNADA, N. S.; SCHWINGEL, A. W.; COSTA, M. S. S. M. Crude glycerin in anaerobic co-digestion of dairy cattle manure increases methane production. Scientia Agricola, v. 74, n. 3, p. 175-179, 2016. https://doi.org/10.1590/1678-992x-2016-0057

XIAO, B.; ZHANG, W.; WU, J.; QIANG, H.; LIU, J.; LI, Y. Temperature-phased anaerobic digestion of food waste: A comparison with single-stage digestions based on performance and energy balance. Bioresource Technology, v. 249, p. 826-834, 2018. http://dx.doi.org/10.1016/j.biortech.2017.10.084

Publicado

2023-04-13 — Actualizado el 2024-06-11

Versiones

Número

Sección

Desenvolvimento Rural / Rural development

Cómo citar

GENERACIÓN DE BIOGÁS Y ENERGÍA TÉRMICA EN LA AGROINDUSTRIA BOLO DAS OLIVEIRAS, POMBAL, PARAÍBA, BRASIL. (2024). Nativa, 11(1), 108-114. https://doi.org/10.31413/nativa.v11i1.14583 (Original work published 2023)