PRODUCTIVE RESPONSE OF GRASSES AND LEGUMES TO DIFFERENT LEVELS OF PHOSPHORUS FERTILIZATION

Authors

  • Dr. Keneth Reátegui de Águila kreateguid@unia.edu.pe
    Faculty of Engineering and Environmental Sciences, National Intercultural University of the Amazon, Pucallpa, Peru. https://orcid.org/0000-0002-0201-2596
  • Dr. Vitelio Asencios Tarazona vasenciost@unia.edu.pe
    Faculty of Engineering and Environmental Sciences, National Intercultural University of the Amazon, Pucallpa, Peru. https://orcid.org/0000-0002-0253-3148
  • Dr. Ronald Marlon Lozano Reátegui rlozanor@unia.edu.pe
    Faculty of Engineering and Environmental Sciences, National Intercultural University of the Amazon, Pucallpa, Peru. https://orcid.org/0000-0002-0656-0792
  • Dra. Ayda Guisella Avalos Díaz aavalosd@unia.edu.pe
    Faculty of Engineering and Environmental Sciences, National Intercultural University of the Amazon, Pucallpa, Peru. https://orcid.org/0000-0003-0329-9506
  • Iris Olivia Ruíz-Yance iruizy@unia.edu.pe
    Faculty of Engineering and Environmental Sciences, National Intercultural University of the Amazon, Pucallpa, Peru. https://orcid.org/0000-0002-2300-3672
  • Dr. Ángel Amado Romero Cahuana aromeroc@unia.edu.pe
    Faculty of Engineering and Environmental Sciences, National Intercultural University of the Amazon, Pucallpa, Peru. https://orcid.org/0000-0002-4790-2883
  • Sucena Elizabeth Moreno-Moreno sucena_moreno@unu.edu.pe
    Faculty of Economic Sciences, National University of the Ucayali, Pucallpa, Peru. https://orcid.org/0009-0003-2173-2219

DOI:

https://doi.org/10.31413/nat.v13i3.19335


Keywords:

forage grasses, legumes, dry matter, forage productivity, tropical soils

Abstract

Phosphorus deficiency in tropical soils restricts forage production, requiring appropriate fertilisation to improve the yield of grasses and legumes. The objective of the study was to evaluate the productive response of two forage grasses (Brachiaria decumbens and Brachiaria dictyoneura) and three legumes (Desmodium ovalifolium, Stylosanthes guianensis cv. "Pucallpa", and Pueraria phaseoloides - "Kudzu") to different levels of phosphorus fertilisation and its combination with calcium, sulphur, and potassium. A randomised complete block design with three replications was used at the "La Esperanza" Experimental Station, Puerto Bermúdez, Peru. Ten fertilisation treatments were established, ranging from no fertilisation to combined applications of 60 kg ha-1 of P₂O₅, 750 kg ha-1 of Ca, 20 kg ha-1 of S, and 40 kg ha-1 of K₂O. The results showed significant differences in dry matter production between species and treatments (p < 0.05). Among grasses, Brachiaria decumbens achieved its highest yield with treatment 10 (2953 kg ha-1), while among legumes, Stylosanthes guianensis excelled with 2682 kg ha-1 under treatment 8. These findings highlight the importance of balanced fertilisation in forage productivity, providing key information for optimising agronomic management in low-fertility tropical soils.

Keywords: forage grasses; forage legumes; forage productivity; tropical soils.

References

BARUAH, M.; GOGOI, M.; CHANDRA BORO, R.; BAROOAH, M. Priestia aryabhattai MBM3-mediated enhancement of sulphur metabolism in Brassica campestris. Current Microbiology, v. 81, n. 10, e316, 2024. https://doi.org/10.1007/s00284-024-03844-0

BECHTAOUI, N.; RABIU, M. K.; RAKLAMI, A.; OUFDOU, K.; HAFIDI, M.; JEMO, M. Phosphate-dependent regulation of growth and stress management in plants. Frontiers in Plant Science, v. 12, e679916, 2021. https://doi.org/10.3389/fpls.2021.679916

BÉNÉ, C.; BARANGE, M.; SUBASINGHE, R.; PINSTRUP-ANDERSEN, P.; MERINO, G.; HEMRE, G.-I.; WILLIAMS, M. Feeding 9 billion by 2050 – Putting fish back on the menu. Food security, v. 7, n. 2, p. 261-274, 2015. https://doi.org/10.1007/s12571-015-0427-z

BRADY, N. C.; NEIL, R. R. The Soils around Us. In: The Nature and Properties of Soils (14th ed.) Prentice Hall, 2008. pp. 1-32.

CARSTENSEN, A.; HERDEAN, A.; SCHMIDT, S. B.; SHARMA, A.; SPETEA, C.; PRIBIL, M.; HUSTED, S. The impacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Physiology, v. 177, n. 1, p. 271-284, 2018. https://doi.org/10.1104/pp.17.01624

CIAT_Centro Interamericano de Agricultura Tropical. Manual de análisis de suelos y tejido vegetal: una guía teórica y práctica de metodologías. 1993. 97f. Available in: https://hdl.handle.net/10568/7002. Accesed: 14 march 2025.

COLOVIC, M. B.; VASIC, V. M.; DJURIC, D. M.; KRSTIC, D. Z. Sulphur-containing amino acids: Protective role against free radicals and heavy metals. Current Medicinal Chemistry, v. 25, n. 3, p. 324-335, 2018. https://doi.org/10.2174/0929867324666170609075434

COSTA, N. DE L.; PAULINO, V. T.; GIANLUPPI, V.; BENDAHAN, A. B.; MAGALHÃES, J. A. Produtividade de forragem e composição química de Stylosanthes capitata cv. Lavradeiro sob níveis de fósforo. PubVet, v. 12, n. 5, p. 1-6, 2018. https://doi.org/10.22256/pubvet.v12n5a98.1-6

COSTA, N.; TOWNSEND, C.; MAGALHÃES, J.; PAULINO, V.; RODRIGUES, A. Produtividade de pastagens degradadas de Brachiaria brizantha cv. Marandu sobressemeadas com Desmodium ovalifolium CIAT-350. PubVet, v. 9, n. 9, p. 400-404, 2015. https://doi.org/10.22256/pubvet.v9n9.400-404

CRUZ-MACÍAS, W. O.; RODRÍGUEZ-LARRAMENDI, L. A.; SALAS-MARINA, M. Á.; HERNÁNDEZ-GARCÍA, V.; CAMPOS-SALDAÑA, R. A.; CHÁVEZ-HERNÁNDEZ, M. H.; GORDILLO-CURIEL, A. Efecto de la materia orgánica y la capacidad de intercambio catiónico en la acidez de suelos cultivados con maíz en dos regiones de Chiapas, México. Terra Latinoamericana, v. 38, n. 3, p. 475-480, 2020. https://doi.org/10.28940/terra.v38i3.506

DA SILVA VIEIRA, A.; DA SILVA, M. P.; BINS, L. K.; FIGUEREDO, J. C. Efeito da adubação fosfatada no desenvolvimento vegetativo da Brachiaria brizantha cv. Mg-5. Revista de Administração e Negócios da Amazônia, v. 1, n. 3, p. 280-291, 2019. https://doi.org/10.37885/210203398

DESTA, G.; KASSAWMAR, T.; TADESSE, M.; ZELEKE, G. Extent and distribution of surface soil acidity in the rainfed areas of Ethiopia. Land Degradation and Development, v. 32, n. 18, p. 5348-5359, 2021. https://doi.org/10.1002/ldr.4113

ENRIQUEZ, E. A.; RODRIGUEZ, L. K.; BARRERA, L. P.; CEDEÑO, J. M.; Deficiencia nutricional de macronutrientes en plantas de pimiento (Capsicum annuum L.) cultivadas en solución nutritiva. Revista de Investigación Talentos, v. 9, n. 1, p. 69-82, 2022. https://doi.org/10.33789/talentos.9.1.162

FAGERIA, N. K.; BALIGAR, V. C.; JONES, C. A. Growth and mineral nutrition of field crops, third edition. 3. Ed. Boca Ratón: CRC Press, 2010. 586p. https://doi.org/10.1201/b10160

FERNÁNDEZ, R.; QUIROGA, A.; ÁLVAREZ, C.; LOBARTINI, C.; NOELLEMEYER, E. Valores umbrales de algunos indicadores de calidad de suelos en molisoles de la región semiárida pampeana. Ciencia del Suelo, v. 34, p. 279-292, 2016.

GARCÍA-FERRERA, L., BOLAÑOS-AGUILAR, E. D., RAMOS-JUÁREZ, J., OSORIO ARCE, M., LAGUNES-ESPINOZA, L. D. C. Rendimiento y valor nutritivo de leguminosas forrajeras en dos épocas del año y cuatro edades de rebrote. Revista Mexicana de Ciencias Pecuarias, v. 4, p. 453-468, 2015.

GOROBETS, O.; GOROBETS, S.; POLYAKOVA, T.; ZABLOTSKII, V. Modulation of calcium signaling and metabolic pathways in endothelial cells with magnetic fields. Nanoscale Advances, v. 6, n. 4, p. 1163-1182, 2024. https://doi.org/10.1039/D3NA01065A

HAVLIN, J. L.; TISDALE, S. L.; NELSON, W. L.; BEATON, J. D. Soil fertility and fertilizers. 8 ed. Nueva Delhi: Pearson Education India. 2016. 528p.

KABAŁA, C.; ŁABAZ, B. Relationships between soil pH and base saturation – conclusions for Polish and international soil classifications. Soil Science Annual, v. 69, n. 4, p. 206-214, 2018. https://doi.org/10.2478/ssa-2018-0021

LAWRENCE, G. B.; MCDONNELL, T. C.; SULLIVAN, T. J.; DOVCIAK, M.; BAILEY, S. W.; ANTIDORMI, M. R.; ZARFOS, M. R. Soil base saturation combines with beech bark disease to influence composition and structure of sugar maple-beech forests in an acid rain-impacted region. Ecosystems, v. 21, n. 4, p. 795-810, 2018. https://doi.org/10.1007/s10021-017-0186-0

LEE, S.; KIM, J.; JEONG, S. W. Analysis of the organic matter content for soil samples taken at the new points of Korea soil quality monitoring network. Journal of Korean Society of Environmental Engineers, v. 38, n. 12, p. 641-646, 2016. http://dx.doi.org/10.4491/KSEE.2016.38.12.64

MCDONNELL, R. P.; STAINES, M. V.; BOLLAND, M. D. A. Determining the critical plant test potassium concentration for annual and Italian ryegrass on dairy pastures in south‐western Australia. Grass and Forage Science: the journal of the British Grassland Society, v. 73, n. 1, p. 112-122, 2018. https://doi.org/10.1111/gfs.12286

MIELKI, G. F.; NOVAIS, R. F.; KER, J. C.; VERGÜTZ, L.; CASTRO, G. F. Iron availability in tropical soils and iron uptake by plants. Revista Brasileira de Ciência do Solo, v. 40, e0150174, 2016. https://doi.org/10.1002/ldr.4561

MOSTOFA, M. G.; RAHMAN, M. M.; GHOSH, T. K.; KABIR, A. H.; ABDELRAHMAN, M.; RAHMAN KHAN, M. A.; MOCHIDA, K.; TRAN, L.-S. P. Potassium in plant physiological adaptation to abiotic stresses. Plant physiology and biochemistry, v. 186, p. 279-289, 2022. https://doi.org/10.1016/j.plaphy.2022.07.011

OMOREGIE, A. U.; OMUETI, J. A. I. Initial and residual responses of Verano Stylo [Stylosanthes hamata (L.)] and Centro [Centrosema pascuorum (Benth.)] to phosphorus in ungrazed swards. Journal of Current Opinion in Crop Science, v. 3, n. 3, p. 161-167, 2022. https://doi.org/10.62773/jcocs.v3i3.182

PANDAO, M. R.; THAKARE, A. A.; CHOUDHARI, R. J.; NAVGHARE, N. R.; SIRSAT, D. D.; RATHOD, S. R. Soil health and nutrient management. International Journal of Plant and Soil Science, v. 36, p. 873-883, 2024. http://dx.doi.org/10.9734/ijpss/2024/v36i54583

PETŐ, J.; HÜVELY, A.; VOJNICH, V. J.; CSERNI, I. Investigation of the relationship between soil organic matter and magnesium content. Gradus, v. 7, n. 1, p. 53-56, 2020. https://doi.org/10.47833/2020.1.AGR.013

POWERS, S.; MIRSKY, E.; BANDARANAYAKE, A.; THAVARAJAH, P.; SHIPE, E.; BRIDGES, W.; THAVARAJAH, D. Field pea (Pisum sativum L.) shows genetic variation in phosphorus use efficiency in different P environments. Scientific Reports, v. 10, n. 1, e18940, 2020. https://doi.org/10.1038/s41598-020-75804-0

PORTO, E. M. V.; ALVES, D. D.; VITOR, C. M. T.; GOMES, V. M.; DA SILVA, M. F.; DE SOUZA DAVID, A. M. S. Rendimento forrageiro da Brachiaria brizantha cv. Marandu submetida a doses crescentes de fósforo. Scientia Agraria Paranaensis, v. 11, n. 3, p. 25-34. https://doi.org/10.18188/sap.v11i3.4238

PRUDENCIO, M. F.; DE ALMEIDA, L. J. D. C.; MOREIRA, A.; FREITAS, G. D. S.; HEINRICHS, R.; SOARES FILHO, C. V. Effect of phosphorus-containing polymers on the shoot dry weight yield and nutritive value of Mavuno grass. Agronomy, v. 13, n. 4, e1145, 2023. https://doi.org/10.3390/agronomy13041145

QUESADA, C. A.; LLOYD, J.; ANDERSON, L. O.; FYLLAS, N. M.; SCHWARZ, M.; CZIMCZIK, C. I. Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences, v. 8, n. 6, p. 1415-1440, 2011. https://doi.org/10.5194/bg-8-1415-2011

REIS, L. T. S.; ALENCAR, N. M.; OLIVEIRA, H. M. R. DE; CARNEIRO, R. S.; ANDRÉ, T. B.; SANTOS, A. C. DOS. Adubação potássica de cultivares de Megathyrsus maximus. Nativa, v. 12, n. 1, p. 97-101, 2024. https://doi.org/10.31413/nat.v12i1.16009

RHEINHEIMER, DOS S. D.; TROIAN, A.; BASTOS, M. C.; PESINI, G.; TIECHER, T. Soil aluminum saturation threshold for subtropical crops in no-tillage system. Soil Research, v. 62, n. 3, eSR23174, 2024. https://doi.org/10.1071/SR23174

SEGURA, H.; ESPINOZA, J. C.; JUNQUAS, C.; TAKAHASHI, K. Evidencing decadal and interdecadal hydroclimatic variability over the Central Andes. Environmental Research Letters, v. 11, n. 9, e094016, 2016. http://dx.doi.org/10.1088/1748-9326/11/9/094016

SOLLY, E. F.; WEBER, V.; ZIMMERMANN, S.; WALTHERT, L.; HAGEDORN, F.; SCHMIDT, M. W. A critical evaluation of the relationship between the effective cation exchange capacity and soil organic carbon content in Swiss forest soils. Frontiers in Forests and Global Change, v. 3, n. 98, e098, 2020. https://doi.org/10.3389/ffgc.2020.00098

SUN, L.; SONG, L.; ZHANG, Y.; ZHENG, Z.; LIU, D. Arabidopsis PHL2 and PHR1 act redundantly as the key components of the central regulatory system controlling transcriptional responses to phosphate starvation. Plant physiology, v. 170, n. 1, p. 499-514, 2016. https://doi.org/10.1104/pp.15.01336

WANG, A.; KONG, X.; SONG, X.; JU, B.; LI, D. Study on exchangeable cation determining base saturation percentage of soil in South China. Agricultural Sciences, v. 11, n. 1, p. 17-26, 2020. https://doi.org/10.4236/as.2020.111002

WANG, A.; JU, B.; LI, D. Predicting base saturation percentage by pH- a case study of red soil series in South China. Agricultural Sciences. v. 10, n. 4, e508, 2019. https://doi.org/10.4236/as.2019.104040

WEIL, R. R.; BRADY, N. C. The nature and properties of soils. v. 1104. London: Pearson, 2016.

WENG, X.; LI, H.; REN, C.; ZHOU, Y.; ZHU, W.; ZHANG, S.; LIU, L. Calcium regulates growth and nutrient absorption in poplar seedlings. Frontiers in Plant Science, v. 13, e887098, 2022. https://doi.org/10.3389/fpls.2022.887098

ZHANG, S.; CHEN, X.; JI, Z.; YAN, X.; KONG, K.; CAI, Y.; ZHU, Q.; MUNEER, M. A.; ZHANG, F.; WU, L. Reducing aluminum is the key nutrient management strategy for ameliorating soil acidification and improving root growth in an acidic citrus orchard. Land Degradation and Development, v. 34, n. 6, p. 1681-1693, 2023. https://doi.org/10.1002/ldr.4561

ZUBIETA, R.; SAAVEDRA, M.; SILVA, Y.; GIRÁLDEZ, L. Spatial analysis and temporal trends of daily precipitation concentration in the Mantaro River basin: Central Andes of Peru. Stochastic Environmental Research and Risk Assessment: Research Journal, v. 31, n. 6, p. 1305-1318, 2017. https://doi.org/10.1007/s00477-016-1235-5

Downloads

Published

2025-09-25

Issue

Section

Zootecnia / Animal Husbandry

How to Cite

PRODUCTIVE RESPONSE OF GRASSES AND LEGUMES TO DIFFERENT LEVELS OF PHOSPHORUS FERTILIZATION. (2025). Nativa, 13(3), 524-531. https://doi.org/10.31413/nat.v13i3.19335

Most read articles by the same author(s)