SILVER NITRATE AND BIO-SILVER NANOPARTICLES ON SOME MORPHOLOGICAL, PHYSIOLOGICAL, AND ANATOMICAL VARIATIONS OF TOMATO PLANTS

Authors

DOI:

https://doi.org/10.31413/nat.v13i2.19065


Keywords:

Bio-AgNPs, phytotoxicity, heavy metals, plant growth, chlorophyll, catalase

Abstract

An experiment in a greenhouse was conducted to study the influence of silver nitrate and silver nanoparticles on morphological, physiological, and anatomical characteristics of tomato plants. Silver nanoparticles were synthesized using green tea extract as capping and reducing agents. As observed in FE-SEM images, the biosynthesized silver nanoparticles were circular with a diameter of 61 ± 6 nm. The following effects were observed: i) Morphology: Silver nitrate positively influenced the character of plant length, root length, root dry weight and root fresh weight. ii) Physiology: When tomato plants were treated with Bio-AgNPs and silver nitrate, antioxidant enzymes (SOD and Catalase) and chlorophyll were increased, while total sugar content in tomato leaves was decreased. Silver in silver nitrate or silver nanoparticles did not significantly affect proline content. iii) Anatomy: Exposure to Bio-AgNPs resulted in decreased cortex thickness, vascular bundle length, and the appearance of dark regions in the intercellular space in tomato stem pith and cortex tissues. In contrast, exposure to silver nitrate resulted in decreased stomatal length on both leaf surfaces, decreased number of stomata on the upper surface, and increased number of stomata on the lower leaf surface, compared to other treatments.

Keywords: Bio-AgNPs; phytotoxicity; heavy metals; plant growth; chlorophyll; catalase; plant anatomy.

 

Silver nitrate and bio-silver nanoparticles on some morphological, physiological, and anatomical variations of tomato plants

 

RESUMO: Um experimento em uma estufa de produção vegetal foi conduzido para estudar a influência do nitrato de prata e de nanopartículas de prata em caracteristicas morfológicas, fisiológicas e anatomicas de plantas de tomate. Nanopartículas de prata foram sintetizadas usando extrato de chá verde como agentes de cobertura e redução. Por imagens de FE-SEM, as nanopartículas de prata biossintetizadas apresentavam formato circular com um diâmetro de 61 ± 6 nm. Foram observados os efeitos: i) morfologia: O nitrato de prata influenciou positivamente o caráter do comprimento da planta, comprimento da raiz, peso seco e fresco da raiz. ii) fisiologia: quando as plantas de tomate tratadas com Bio-AgNPs e nitrato de prata, as enzimas antioxidantes (SOD e catalase) e clorofila foram aumentadas, enquanto o conteúdo de açúcares totais nas folhas de tomate foi diminuído. A prata, seja em nitrato de prata ou nanopartículas de prata, não afetou significativamente o conteúdo de prolina. iii) Anatomia: a exposição a Bio-AgNPs resultou na diminuição da espessura do córtex, no comprimento do feixe vascular e no aparecimento de regiões escuras no espaço intercelular nos tecidos da medula e do córtex do caule do tomateiro. Em contraste, a exposição ao nitrato de prata resultou na diminuição do comprimento dos estômatos em ambas as superfícies foliares, na diminuição do número de estômatos na superfície superior e, ao mesmo tempo, no aumento do número de estômatos na superfície inferior da folha, em comparação com outros tratamentos.

Palavras-chave: Bio-AgNPs; fitotoxicidade; metais pesados; crescimento de plantas; clorofila; catalase; anatomia vegetal.   

References

ABDEL-AZEEM, E. A.; ELSAYED, B. A. Phytotoxicity of silver nanoparticles on Vicia faba seedlings. New York Science Journal, v. 6, n. 12, p. 148-155, 2013.

AEIBI, H. Catalase in vitro. Methods of Enzymology, v. 105, p. 121-126, 1984. https://doi.org/10.1016/S0076-6879(84)05016-3

AHMAD, K. A. L. I. D.; KHAN, M. A.; AHMAD, M.; SHAHEEN, N. I. G. H. A. T.; NAZIR, A. B. D. U. L. Taxonomic diversity in epidermal cells of some sub-tropical plant species. International Journal of Agriculture & Biology, v. 12, n. 1, p. 115-118, 2010.

AL-JUBOORY, M. S.; SHAKIR, Walaa M. Effect of spraying potassium on the growth of Vicia faba L. Kirkuk Journal of Science, v. 14, n. 3, p. 174-187, 2019. https://doi.org/10.32894/KUJSS.2019.14.3.13

Al-SALAMA, Y.; ALGLGHORAIBIL, I.; AlSOUSE, M.; ZEIN, R. The Impact of seed priming silver nanoparticles on germination indicators of durum wheat (Triticum durum L., var. Sham 7). Al-Qadisiyah Journal For Agriculture Sciences, v. 14, n. 1, p. 23-29, 2024. https://doi.org/10.33794/qjas.2024.145858.1157

BATES, L. S.; WALDREN, R. P.; TEARE, I. D. Rapid determination of free proline for water-stress studies. Plant and Soil, v. 39, p. 205-207, 1973. https://doi.org/10.1007/BF00018060

BROOKIE, K. L.; BEST, G. I.; CONNER, T. S. Intake of raw fruits and vegetables is associated with better mental health than intake of processed fruits and vegetables, Frontiers in Psychology, v. 9, e487, 2018. https://doi.org/10.3389/fpsyg.2018.00487

CASTRO-GONZALEZ, C. G.; SANCHEZ-SEGURA, L.; GOMEZ-MERINO, F. C.; BELLA-BELLO, J. J. Exposure of stevia (Stevia rebaudiana B.) to silver nanoparticles in vitro: transport and accumulation. Scientific Reports, v. 9, n. 1, e10372, 2019. https://doi.org/10.1038/s41598-019-46828-y

DUBOIS, M.; GILLES, K. A.; HAMILTON, J. K.; REBERS, P. T.; SMITH, F. Colorimetric method for determination of sugars and related substances. Analytical chemistry, v. 28, n. 3, p. 350-356, 1956. https://doi.org/10.1021/ac60111a017

ELFEKY, S. A.; MOHAMMED, M. A.; KHATER, M. S.; OSMAN, Y. A.; ELSHERBINIL, E. Effect of magnetite nano-fertilizer on growth and yield of Ocimum basilicum L. International Journal of Indigenous Medicinal Plants, v. 46, n. 3, p. 1286-11293, 2013.

EL‐TEMSAH, Y. S.; JONER, E. J. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environmental Toxicology, v. 27, n. 1, p. 42-49, 2011. https://doi.org/10.1002/tox.20610

FARGHALY, F. A.; NAFADY, N. A. Green synthesis of silver nanoparticles using leaf extract of Rosmarinus Officinalis and its effect on tomato and wheat plants. Journal of Agricultural Science, v.7, n. 11, e277, 2015.

FRANCO, J. A.; PEREZ-SAURA, P. J.; FERNANDEZ, J. A.; PARRA, M.; GARCIA, A. L. Effect of two irrigation rates on yield, incidence of blossom-end rot, mineral content and free amino acid levels in tomato cultivated under drip irrigation using saline water. The Journal of Horticultural Science and Biotechnology, v. 74, n. 4, p. 430-435, 1999. https://doi.org/10.1080/14620316.1999.11511132

GALLEGO, S. M.; BENAVIDES, M. P.; TOMARO, M. L. Effect of Heavy Metal Ion Excess on Sunflower Leaves: Evidence for Involvement of Oxidative Stress. Plant Science, v. 121, n. 2, p. 151-159, 1996. https://doi.org/10.1016/S0168-9452(96)04528-1

GARCCIA, J. S.; GRATAO, P. L.; AZEVEDO, R. A.; ARRUDA, M. A. Z. Metal Contamination effects on sunflower (Helianthus annuus L.) growth and protein expression in leaves during development. Journal of Agricultural and Food Chemistry, v. 54, n. 22, p. 8623-8630, 2006. https://doi.org/10.1021/jf061593l

GEISLER-LEE, J.; WANG, Q.; YAO, Y.; ZHANG, W.; GEISLER, M.; LI, K.; HUANG, Y.; CHEN, Y.; KOLMAKOV, A.; MA, X. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology, v.7, n.3, p. 323-337, 2013. https://doi.org/10.3109/17435390.2012.658094

GIRALDO, J. P.; LANDRY, M. P.; FALTERMEIER, S. M.; McNICHOLAS, T. P.; IVERSON, N. M.; BOGHOSSIAN, A. A.; REUEL, N. F.; HILMER, A. J.; SEN, F.; BREW, J. A.; STRANO, M. S. Plant Nanobionics Approach to Augment Photosynthesis and Biochemical Sensing. Nature Materials, v. 13, n. 4, p. 400-408, 2014. https://doi.org/10.1038/nmat3890

GIOVANNI, C. D.; ORCO, P. D.; BRUNO, A.; CICCARESE, F.; LOTTI, C.; RICCIARDI, L. Identification of PCR-based markers (RAPD, AFLP) linked to a novel powdery mildew resistance gene (ol-2) in tomato. Plant Science, v. 166, p. 41-48, 2004. https://doi.org/10.1016/j.plantsci.2003.07.005

HAMOUDA, R. A.; HUSSEIN, M. H.; ABO-ELMAGD, R. A.; BAWAZIR, S. S. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Scientific Reports, v. 9, n. 1, e13071, 2019. https://doi.org/10.1038/s41598-019-49444-y

HASAN, M.; MEHMOOD, K.; MUSTAFA, G.; ZAFAR, A.; TARIQ, T.; HASSAN, S. G.; LOOMBA, S.; ZIA, M.; MAZHER, A.; MAHMOOD, N.; SHU, X. Phytotoxic evaluation of phytosynthesized silver nanoparticles on lettuce. Coatings, v. 11, n. 2, e225, 2021. https://doi.org/10.3390/coatings11020225

HOJJAT, S. S.; HOJJAT, H. Effect of nano silver on seed germination and seedling growth in fenugreek seed. International Journal of Food Engineering, v. 1, n. 2, p. 106-110, 2015.

KAVITHA, K. S.; BAKER, S.; RAKSHITH, D.; KAVITHA, H. U.; YASHWANTHA, R. H. C.; HARINI, B. P.; SATISH, S. Plants as green source towards synthesis of nanoparticles. International Research Journal of Biological Sciences, v. 2, n. 6, p. 66-76, 2013.

KOLBERT, Z.; SZOOLSI, R.; RONVARI, A.; MOLNAR, Á. Nanoforms of essential metals: from hormetic phytoeffects to agricultural potential. Journal of Experimental Botany, v. 73, n. 6, p. 1825-1840,‏ 2022. https://doi.org/10.1093/jxb/erab547

KRISHNARAJ, C.; JAGAN, E. G.; RAMACHANDRAN, R.; ABIRAMI, S. M.; MOHAAN, N.; KALAICHELVAN, P. T. Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochemistry, v. 47, n. 4, p. 651-658, 2012. https://doi.org/10.1016/j.procbio.2012.01.006

LANNOY, G. Cultures des légumes. In: RAEMAEKERS, R. H. (Ed.) Agriculture en Afrique Tropicale. Bruxelles: DGCI, 2011. p. 429-513.

LIU, J.; SHAO, Y.; FENG, X.; OTIE, V.; MATSUURA, A.; IRHAD, M.; ZHENG, Y.; AN, P. Cell wall components and extensibility regulate root growth in Suaeda salsa and Spinacia oleracea under salinity. Plants, v. 11, n. 7, e900, 2022. https://doi.org/10.3390/plants11070900

LOO, Y. Y.; CHIENG, B. W.; NISHIBUCHI, M.; RADU, S. Synthesis of silver nanoparticles by using tea leaf extract from Camellia sinensis. International Journal of Nanomedicine, v. 7, p. 4263-4267, 2012. https://doi.org/10.2147/IJN.S33344

MARKLUND, S.; MARKUND, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase." European Journal of Biochemistry, v. 47, n. 3, p. 469- 474, 1974.

MILLS, T. C. Time Series Techniques for Economists. Cambridge: Cambridge University Press, 1990. 387p.

MONREAL, C. M.; DEROSA, M.; MALLUBHOTIA, S. C.; BINDRABAN, P. S.; DIMKPA, C. The Application of Nanotechnology for Micronutrients in Soil-Plant Systems. VFRC Report, v. 3, n. 44, p. 1-53, 2015. https://hub.ifdc.org/handle/20.500.14297/1747

MORON, M. S.; DEPIERRE, J. W.; MANNERVIK, B. Levels of glutathione, glutathione reductase and glutathione s-transferase activities in Rat Lung and Liver. Biochimica et Biophysica Acta - General Subjects, v. 582, n. 1, p. 67-78, 1979. https://doi.org/10.1016/0304-4165(79)90289-7

NAJJAT, N. R. Study of some quantitative and qualitative traits in semi-diallel hybrid crosses between some tomato varieties (Lycopersicum esculentum). 130p. Master’s thesis - Tishreen University, Latakia, Syria, 2008.

OBIKWE, C. O.; OBASEKI-EBOR, E. E. Incidence of tomato fungi and their in-vitro inhibition by Honey Distillate (Hy-1). Nigerian Journal of Microbiology, v. 7, n. 1, p. 121-127,1987.

RAZZAQ, A.; AMMARA, R.; JHANZAB, H. M.; MAHMOOD, T.; HAFEEZ, A.; HUSSAIN, S. A novel nanomaterial to enhance growth and yield of wheat. Journal of Nanoscience and Technology, v. 2, n. 1, p. 55-58, 2016.

RIDHA, D. M.; AL-RAFYAI, H. M.; NAJI, N. S. Bactericidal potency of green synthesized silver nanoparticles against waterborne Escherichia coli Isolates. Nano Biomedicine and Engineering, v. 13, n. 4 , p. 372-379, 2021.

ROLIM, W. R.; PELEGRINO, M. T.; LIMA, B. de A.; FERRAZ, L. S.; COSTA, F. N.; BERNARDES, J. S.; RODRIGUES, T.; BROCCHI, M.; SEABRA, A. B. Green tea extract mediated biogenic synthesis of silver nanoparticles: characterization, cytotoxicity evaluation and antibacterial activity. Applied Surface Science, v. 463, p. 66-74, 2019. https://doi.org/10.1016/j.apsusc.2018.08.203

SALAMA, H. M. H. Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). International Research Journal of Biotechnology, v. 3, n. 10, p. 190-197, 2012.

SALEEB, N.; ROBINSON, B.; CAVANAGH, J.; HOSSAIN, A. K. M.; GOONERATNE, R. Biochemical changes in sunflower plant exposed to silver nanoparticles/silver ions. Journal of Food Science & Technology, v. 4, n. 2, p. 629-644, 2019.

SHAH, V.; BELOZEROVA, I. Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water, Air, and Soil Pollution, v. 197, p. 143-148, 2009. https://doi.org/10.1007/s11270-008-9797-6

SINGH, I. D.; STOSKOPF, N. C. Harvest index in cereals. Agronomy Journal, v. 63, n. 2, p. 224-226, 1971. https://doi.org/10.2134/agronj1971.00021962006300020008x

TRIPATHI, D. K.; TRIPATHI, A.; SHWETA, S.; SINGH, Y.; SINGH, K.; VISHWAKARMA, G.; YADAV, S.; SHARMA, V. K.; SINGH, R. K.; MISHRA, R. G.; UPADHYAY, N. K.; DUBEY, Y. L.; CHAUHAN, D. K. Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Frontiers in Microbiology, v. 8, eo7, 2017. https://doi.org/10.3389/fmicb.2017.00007

TUYLU, M. Examination of anatomical features of tomato (Lycopersicon esculentum Mill.) varieties cultivated under a hydroponic system. Applied Ecology & Environmental Research, v. 16, n. 3, p. 3381-3391, 2018.

WIDATALLA, H. A.; YASSIN, L. F.; ALRASHEID, A. A.; AHMED, S. A. R.; WIDDATALLAH, M. O.; ELTILIB, S. H.; MOHAMED, A. A. Green synthesis of silver nanoparticles using green tea leaf extract, characterization and evaluation of antimicrobial activity. Nanoscale Advances, v. 4, n. 3, p. 911-915, 2022.

Downloads

Published

2025-05-15

Issue

Section

Bioprospecção e Biotecnologia / Bioprospecting and Biotechnology

How to Cite

SILVER NITRATE AND BIO-SILVER NANOPARTICLES ON SOME MORPHOLOGICAL, PHYSIOLOGICAL, AND ANATOMICAL VARIATIONS OF TOMATO PLANTS. (2025). Nativa, 13(2), 226-233. https://doi.org/10.31413/nat.v13i2.19065

Most read articles by the same author(s)