BIRD SPECIES IN TROPICAL FOREST FRAGMENTS, AT DIFFERENT ALTITUDES, IN THE WESTERN ANDES OF ECUADOR
DOI:
https://doi.org/10.31413/nat.v13i2.18910Keywords:
bird counting, forest fragment, habitat loss, relative abundanceAbstract
In this research, the richness, diversity and similarity of bird species were evaluated in six fragments of tropical forests from 170 to 2100 meters above sea level in the western Andes, central Ecuador. The bird count was carried out in 2019 using the technique of counting birds by points, in the forest fragments: Las Cascadas, Ñungañan, Jardín de los Sueños, Los Laureles, Machay, and La Esperanza. The ecological parameters were evaluated by the Shannon Index, relative abundance, and Sorensen Index. The difference between forest fragments and ecological parameters was analyzed using the non-parametric statistical technique of Kruskal-Wallis (p<0.05) and comparison by post hoc. The comparison of the forest fragments was determined with the Mann-Whitney test, because the assumption of normality according to the Shapiro-Wilk test for the analysis of variance was not met. The results showed 219 species of birds belonging to 70 genera, 48 families, and 9 orders. The families with the highest wealth were Thraupidae (15.3%), Tyrannidae (12.7%), Fringillidae (5.4%), and Accipitridae (1.4%). The highest relative abundance of birds for La Esperanza was the species: Anisognathus somptuosus and Streptoprocne rutila; Ñungañan: Pygochelidon cyanoleuca and Coragyps atratus; Los Laureles: Thraupis episcopus and Bubulcus ibis; Machay: Egretta thula and Arremon aurantiirostris; and Las Cascadas: Thraupis episcopus and Forpus coelestis. For the components of bird species diversity in the six forest fragments, there are significant variations in species richness, abundance, and similarity (p<0.05); La Esperanza and Ñungañan being the least disturbed fragments, which presented a greater diversity of species and abundance of birds. These results highlight the importance of these forest fragments as refuges for bird biodiversity, despite the anthropogenic pressures they face.
Keywords: bird counting; forest fragment; habitat loss; relative abundance.
Espécies de aves em fragmentos de florestas tropicais, em diferentes cotas altitudinais, dos Andes ocidentais do Equador
RESUMO: Nesta pesquisa foi avaliada a riqueza, diversidade e similaridade de espécies de em seis fragmentos de florestas tropicais entre 170 a 2100 metros acima do nível do mar, na região ocidental dos Andes, centro do Equador. A contagem de aves foi realizada em 2019 pela técnica de contagem pontual de aves, nos seguintes fragmentos de floresta: Las Cascadas, Ñungañan, Jardín de los Sueños, Los Laureles, Machay e La Esperanza. A avaliação dos parâmetros ecológicos foi realizada utilizando o índice de Shannon, abundância relativa e índice de Sorensen. A diferença entre fragmentos florestais e parâmetros ecológicos foi analisada pela técnica estatística não paramétrica de Kruskal Wallis (p<0,05) e comparação post hoc por meio do teste de Mann Whitney. Para a comparação dos fragmentos florestais, eles foram determinados pelo teste isso porque o pressuposto de normalidade não foi atendido pelo teste de Shapiro Wilks para análise de variância. Os resultados mostraram 219 espécies de aves pertencentes a 70 gêneros, 48 famílias e 9 ordens. As famílias com maior riqueza foram Thraupidae (15,3%), Tyrannidae (12,7%), Fringillidae (5,4%) e Accipitridae (1,4%). As maiores abundâncias relativas de aves para La Esperanza foram as espécies: Anisognathus somptuoso e Streptoprocne rutila; Ñungañan: Pygochelidon cianoleuca e Coragyps atrato; Los Laureles: Thraupis episcopus e Bubulcus ibis; Machay: Egreta Thula e Arremon aurantiirostris e Las Cascadas: Thraupis episcopus e Forpus coelestis. Para os componentes da diversidade de espécies de aves nos seis fragmentos florestais, há variações significativas na riqueza, abundância e similaridade de espécies (p<0,05). Utilizando as espécies como bioindicadoras é possível inferir que La Esperanza e Ñungañan foram os fragmentos menos perturbados e apresentaram maior diversidade e abundância de aves. Estes resultados destacam a importância destes fragmentos florestais como refúgios para a biodiversidade de aves, apesar das pressões antrópicas que enfrentam.
Palavras-chave: contagem de aves; fragmento florestal; perda de habitat; abundância relativa.
References
ALEXANDRINO, E. R.; BUECHLEY, E. R.; PIRATELLI, A. J.; FERRAZ, K. M. P. M. de; MORAL, R. de A.; SEKERCIOGLU, C. H.; SILVA, W. R.; DO COUTO, H. T. Z. Bird sensitivity to disturbance as an indicator of forest patch conditions: An issue in environmental assessments. Ecological Indicators, v. 66, p. 369-381, 2016. https://doi.org/10.1016/j.ecolind.2016.02.006
ANDERSON, A.; JENKINS, C. Applying Nature’s Design: Corridors as a Strategy for Biodiversity Conservation. Columbia University Press, 2006. 256p. https://doi.org/10.7312/ande13410
ARMSTRONG, R. A. When to use the Bonferroni correction. Ophthalmic and Physiological Optics, v. 34, n. 5, p. 502-508, 2014. https://doi.org/10.1111/opo.12131
ASTIANI, D.; RIPIN, R. The roles of community fruit garden (tembawang) on maintaining forest structure, diversity and standing biomass allocation: an alternative effort on reducing carbon emission. Biodiversitas Journal of Biological Diversity, v. 17, n. 1, p. 359-365, 2016.
BIBI, F.; ALI, Z. Measurement of Diversity Indices of Avian Communities at Taunsa Barrage Wildlife Sanctuary, Pakistan. Journal of Animal and Plant Sciences, v. 23, n. 2, p. 469-474, 2013.
BLAKE, J. G.; LOISELLE, B. A. Enigmatic declines in bird numbers in lowland forest of eastern Ecuador may be a consequence of climate change. PeerJ, v. 3, e1177, 2015. https://doi.org/10.7717/peerj.1177
BONILLA POVEDA, C. Colibrí Amazilia Rabirrufa (Amazilia tzacatl). 2021. Available on: https://repositorio.iiarte.ucr.ac.cr//handle/123456789/10990. Accessed at: 13 Nov. 2024.
BOVO, A. A. A.; FERRAZ, K. M. P. M. B.; MAGIOLI, M.; ALEXANDRINO, E. R.; HASUI, E.; RIBEIRO, M. C.; TOBIAS, J. A. Habitat fragmentation narrows the distribution of avian functional traits associated with seed dispersal in tropical forest. Perspectives in Ecology and Conservation, v. 16, n. 2, p. 90-96, 2018. https://doi.org/10.1016/j.pecon.2018.03.004
CARRIÓN-PALADINES, V.; BENÍTEZ, Á.; GARCÍA-RUÍZ, R. Conversion of Andean montane forest to exotic forest plantation modifies soil physicochemical properties in the buffer zone of Ecuador’s Podocarpus National Park. Forest Ecosystems, v. 9, e100076, 2022. https://doi.org/10.1016/j.fecs.2022.100076
CHEN, J.; GAO, Y.; QIAN, H.; JIA, H.; ZHANG, Q. Insights into water sustainability from a grey water footprint perspective in an irrigated region of the Yellow River Basin. Journal of Cleaner Production, v. 316, e128329, 2021. https://doi.org/10.1016/j.jclepro.2021.128329
CUEVA, D.; BRAVO, G. A.; SILVEIRA, L. F. Systematics of Thraupis (Aves, Passeriformes) reveals an extensive hybrid zone between T. episcopus (Blue-gray Tanager) and T. sayaca (Sayaca Tanager). Plos One, v. 17, n. 10, e0270892, 2022. https://doi.org/10.1371/journal.pone.0270892
CURTIS, P. G.; SLAY, C. M.; HARRIS, N. L.; TYUKAVINA, A.; HANSEN, M. C. Classifying drivers of global forest loss. Science, v. 361, n. 6407, p. 1108-1111, 2018. https://doi.org/10.1126/science.aau3445
CUYCKENS, G.; MALIZIA, L.; BLUNDO, C. Composición, diversidad y estructura de comunidades de árboles en un gradiente altitudinal de selvas subtropicales de montaña (Serranías de Zapla, Jujuy, Argentina). Madera Bosques, v. 21, p. 137-148, 2015. https://doi.org/10.21829/myb.2015.213463
DICKINSON, E.; BRUCE, M.; DAVID, N. A review of the authorship and dates of publication of birds newly described from the ʺVoyage de la Coquilleʺ (1822-1825) with comments on some spellings 1. Zoological Bibliography, v. 3, p. 60-162, 2015.
DOS ANJOS, L. dos; COLLINS, C. D.; HOLT, R. D.; VOLPATO, G. H.; MENDONÇA, L. B.; LOPES, E. V.; BOÇON, R.; BISHEIMER, M. V.; SERAFINI, P. P.; CARVALHO, J. Bird species abundance-occupancy patterns and sensitivity to forest fragmentation: Implications for conservation in the Brazilian Atlantic Forest. Biological Conservation, v. 144, p. 2213-2222, 2011. https://doi.org/10.1016/j.biocon.2011.05.013
DOS ANJOS, L.; OLIVEIRA, H. S.; LOPES, E. V.; MEDEIROS, H. R. Valley bottoms increase bird species richness in Atlantic Forest fragments. Acta Oecologica, v. 124, e104008, 2024. https://doi.org/10.1016/j.actao.2024.104008
FASTRÉ, C.; STRUBBE, D.; BALDERRAMA, J. A.; CAHILL, J. R. A.; LEDEGEN, H.; ORELLANA, M. T.; MATTHYSEN, E. Bird species richness in High-Andean Forest fragments: Habitat quality and topography matter. Belgian Journal of Zoology, v. 150, p. 95-133, 2020. https://doi.org/10.26496/bjz.2020.76
FONTÚRBEL, F. E.; RODRÍGUEZ-GÓMEZ, G. B.; FERNÁNDEZ, N.; GARCÍA, B.; ORELLANA, J. I.; CASTAÑO-VILLA, G. J. Sampling understory birds in different habitat types using point counts and camera traps. Ecological Indicators, v. 119, e106863, 2020. https://doi.org/10.1016/j.ecolind.2020.106863
MORALES, R. G.; GONZÁLEZ, J. M. K.; VILLANUEVA, L. S. Variación temporal de la diversidad de aves acuáticas de la laguna Chaschoc, Tabasco, México. Huitzil Revista Mexicana de Ornitología, v. 23, n. 1, e633, 2022. https://doi.org/10.28947/hrmo.2022.23.1.510
GUEVARA, E. A.; SANTANDER, T. F.; ESPINOSA, R.; GRAHAM, C. H. Aquatic bird communities in Andean lakes of Ecuador are increasingly dissimilar over time. Ecological Indicators, v. 121, e107044, 2021. https://doi.org/10.1016/j.ecolind.2020.107044
GUPTA, M.; GAO, J.; AGGARWAL, C. C.; HAN, J. Outlier Detection for Temporal Data: A Survey. IEEE Transactions on Knowledge and Data Engineering, v. 26, n. 9, p. 2250-2267, 2014. https://doi.org/10.1109/TKDE.2013.184
HARIHARAN, P.; RAMAN, T. R. S. Active restoration fosters better recovery of tropical rainforest birds than natural regeneration in degraded forest fragments. Journal of Applied Ecology, v. 59, n. 1, p. 274-285, 2022. https://doi.org/10.1111/1365-2664.14052
HOHNWALD, S. Bird composition of different valley habitats after land-use changes in Northern Honduras. Neotropical Biology and Conservation, v. 16, n. 1, p. 129-144, 2021. https://doi.org/10.3897/neotropical.16. e57624
ILBAY-YUPA, M.; LAVADO-CASIMIRO, W.; RAU, P.; ZUBIETA, R.; CASTILLÓN, F. Updating regionalization of precipitation in Ecuador. Theoretical and Applied Climatology, v. 143, n. 3, p. 1513-1528, 2021. https://doi.org/10.1007/s00704-020-03476-x
IUCN RED LIST. Summary Statistics. Table 5 - Numbers of threatened species (Critically Endangered, Endangered and Vulnerable categories only) in each major taxonomic group by country. Available on: <https://www.iucnredlist.org/en>. Accessed at: 30 Dec. 2024.
JACOME, E. J.; GARCÍA, V. M. G.; CEPEDA, Y. V. M.; ILBAY, M. L. I. Sustainability of agricultural production units in the Western Cordillera of the Ecuadorian Andes. Tropical and Subtropical Agroecosystems, v. 27, n. 2, e02, 2024. https://doi.org/10.56369/tsaes.5122
JONES, H. H.; BARRETO, E.; MURILLO, O.; ROBINSON, S. K. Turnover-driven loss of forest-dependent species changes avian species richness, functional diversity, and community composition in Andean forest fragments. Global Ecology and Conservation, v. 32, p. e01922, 2021. https://doi.org/10.1016/j.gecco.2021.e01922
KLEEMANN, J.; ZAMORA, C.; VILLACIS-CHILUISA, A. B.; CUENCA, P.; KOO, H.; NOH, J. K.; FÜRST, C.; THIEL, M. Deforestation in continental Ecuador with a focus on protected areas. Land, v. 11, n. 2, e02, 2022a. https://doi.org/10.3390/land11020268
KLEEMANN, J.; KOO, H.; HENSEN, I.; MENDIETA-LEIVA, G.; KAHNT, B.; KURZE, C.; INCLAN, D. J.; CUENCA, P.; NOH, J. K.; HOFFMANN, M. H.; FACTOS, A.; LEHNERT, M.; LOZANO, P.; FÜRST, C. Priorities of action and research for the protection of biodiversity and ecosystem services in continental Ecuador. Biological Conservation, v. 265, e 109404, 2022b. https://doi.org/10.1016/j.biocon.2021.109404
KNIEF, U.; FORSTMEIER, W. Violating the normality assumption may be the lesser of two evils. Behavior Research Methods, v. 53, n. 6, p. 2576-2590, 2021. https://doi.org/10.3758/s13428-021-01587-5.
KOVAŘÍK, P.; PECHANEC, V.; MACHAR, I.; HARMÁCEK, J.; GRIM, T. Are birds reliable indicators of most valuable natural areas? Evaluation of special protection areas in the context of habitat protection. Ecological Indicators, v. 132, e108298, 2021. https://doi.org/10.1016/j.ecolind.2021.108298
LE CESSIE, S.; GOEMAN, J. J.; DEKKERS, O. M. Who is afraid of non-normal data? Choosing between parametric and non-parametric tests. European Journal of Endocrinology, v. 182, n. 2, p. E1-E3, 2020. https://doi.org/10.1530/EJE-19-0922
LINERO-TRIANA, D.; CORREA-AYRAM, C. A.; VELÁSQUEZ-TIBATÁ, J. Prioritizing ecological connectivity among protected areas in Colombia using a functional approach for birds. Global Ecology and Conservation, v. 48, e02713, 2023. https://doi.org/10.1016/j.gecco.2023.e02713
LUNA, Á.; ROMERO-VIDAL, P.; ARRONDO, E. Predation and scavenging in the city: A review of spatio-temporal trends in research. Diversity, v. 13, n. 2, e2, 2021. https://doi.org/10.3390/d13020046
MAATE_MINISTERIO DEL AMBIENTE, AGUA Y TRANSICIÓN ECOLÓGICA. Sistema Nacional de Áreas Protegidas - Ministerio del Ambiente, Agua y Transición Ecológica. Available on: <https://www.ambiente.gob.ec/sistema-nacional-de-areas-protegidas/>. Accessed at: 30 Dec. 2024.
MARIAN, F.; CASTILLO, P. R.; ARMIJOS, C. I.; GÜNTER, S.; MARAUN, M.; SCHEU, S. Conversion of Andean montane forests into plantations: Effects on soil characteristics, microorganisms, and microarthropods. Biotropica, v. 52, n. 6, p. 1142-1154, 2020. https://doi.org/10.1111/btp.12813
MARJOKORPI, A.; RUOKOLAINEN, K. The role of traditional forest gardens in the conservation of tree species in West Kalimantan, Indonesia. Biodiversity & Conservation, v. 12, n. 4, p. 799-822, 2003. https://doi.org/10.1023/A:1022487631270
MEKONEN, S. Birds as biodiversity and environmental indicator. Advances in Life Science and Technology, v. 7, n. 21, p. 28-33, 2017.
MOUNCE, R.; RIVERS, M.; SHARROCK, S.; SMITH, P.; BROCKINGTON, S. Comparing and contrasting threat assessments of plant species at the global and sub-global level. Biodiversity and Conservation, v. 27, n. 4, p. 907-930, 2018. https://doi.org/10.1007/s10531-017-1472-z
MULLAN, M.; NIALL, W. Cathartes aura. 2016. Available on: https://www.cervantesvirtual.com/obra/cathartes-aura-861215/.
NOH, J. K.; ECHEVERRIA, C.; GAONA, G.; KLEEMANN, J.; KOO, H.; FÜRST, C.; CUENCA, P. Forest ecosystem fragmentation in Ecuador: Challenges for sustainable land use in the Tropical Andean. Land, v. 11, n. 2, e287, 2022. https://doi.org/10.3390/land11020287
OCAMPO-PEÑUELA, N.; WINTON, R. S. Economic and conservation potential of bird-watching tourism in postconflict Colombia. Tropical Conservation Science, v. 10, e1940082917733862, 2017. https://doi.org/10.1177/1940082917733862
O'NEILL, J. P.; LANE, D. F.; NAKA, L. N. A cryptic new species of thrush (Turdidae: Turdus) from Western Amazonía. The Condor, v. 113, n. 4, p. 869-880, 2011. https://doi.org/10.1525/cond.2011.100244.
PATTINASARANY, C. K.; LATUPAPUA, L.; SANDUAN, A.; LATUPAPUA, Y. Th; TETELAY, F. F.; SOSELISA, F. The diversity of bird species based on the altitude of the protected forest area in Sirimau Mountain in Soya Village - Ambon City. IOP Conference Series: Earth and Environmental Science, v. 883, n. 1, e012025, 2021. https://doi.org/10.1088/1755-1315/883/1/012025
PERÚ AVES. Scrub Blackbird (Dives warszewiczi). Perú Aves, 23 abr. 2023. Available on: https://www.peruaves.org/icteridae/scrub-blackbird-dives-warszewiczi/. Accessed at: 30 Dec. 2024.
RÍOS-TOUMA, B.; ROSERO, O.; MORABOWEN, A.; GUAYASAMIN, J. M.; CARSON, C.; VILLAMARÍN-CORTEZ, S.; SOLANO-UGALDE, A.; TOBES, I.; CUESTA, F. Biodiversity responses to land-use change in the equatorial Andes. Ecological Indicators, v. 156, e111100, 2023. https://doi.org/10.1016/j.ecolind.2023.111100
RITCHIE, H.; ROSER, M. Deforestation and forest loss. 2021. Available on: https://ourworldindata.org/forests-and-deforestation. Accessed at: 30 Dec. 2024.
SALAZAR, J. M.; POMAVILLA, M.; POLLARD, A. T.; CHICA, E. J.; PEÑA, D. F.; Endophytic fungi associated with roots of epiphytic orchids in two Andean forests in southern Ecuador and their role in germination. Lankesteriana, v. 20, n. 1, p. 37-47, 2020. https://doi.org/10.15517/lank.v20i1.41157
SCHLAEPFER, D. R.; BRASCHLER, B.; RUSTERHOLZ, H.-P.; BAUR, B. Genetic effects of anthropogenic habitat fragmentation on remnant animal and plant populations: A meta-analysis. Ecosphere, v. 9, n. 10, e02488, 2018. https://doi.org/10.1002/ecs2.2488
SHAW, D. W.; ESCALANTE, P.; RAPPOLE, J. H.; RAMOS, M. A.; OEHLENSCHLAGER, R. J.; WARNER, D. W.; WINKER, K. Decadal changes and delayed avian species losses due to deforestation in the northern Neotropics. PeerJ, v. 1, e179, 2013. https://doi.org/10.7717/peerj.179
SIEGEL, T. D.; COOPER, W. J.; FORKNER, R. E.; LAURANCE, W. F.; CAMARGO, J. L.; LUTHER, D. Forest fragmentation effects on mutualistic interactions: frugivorous birds and fruiting trees. Oikos, v. 2024, n. 10, p. e10383, 2024. https://doi.org/10.1111/oik.10383
SILVA, M. A. de A. Variações em características reprodutivas de aves do gênero Tyrannus ao longo do espaço e tempo em função do clima. 134f. Tese [Doutorado em Ecologia] – Universidade de Brasília, Brasília, 2024. Available on: http://repositorio.unb.br/handle/10482/50172. Accessed at: 13 Nov. 2024.
SIMAMORA, T. I.; PURBOWO, S. D.; LAUMONIER, Y. Looking for indicator bird species in the context of forest fragmentation and isolation in West Kalimantan, Indonesia. Global Ecology and Conservation, v. 27, p. e01610, 2021. https://doi.org/10.1016/j.gecco.2021.e01610
SOLAR, R. R. de C.; BARLOW, J.; FERREIRA, J.; BERENGUER, E.; LEES, A. C.; THOMSON, J. R.; LOUZADA, J.; MAUÉS, M.; MOURA, N. G.; OLIVEIRA, V. H. F.; CHAUL, J. C. M.; SCHOEREDER, J. H.; VIEIRA, I. C. G.; NALLY, R. M.; GARDNER, T. A. How pervasive is biotic homogenization in human-modified tropical forest landscapes? Ecology Letters, v. 18, n. 10, p. 1108-1118, 2015. Available on: https://doi.org/10.1111/ele.12494
TERRIGOL, A.; EBOUELE, S. E.; DARVEAU, M.; HÉBERT, C.; RIVEST, L.-P.; FORTIN, D. On the efficiency of indicator species for broad-scale monitoring of bird diversity across climate conditions. Ecological Indicators, v. 137, e108773, 2022. https://doi.org/10.1016/j.ecolind.2022.108773
TONETTI, V.; BOCALINI, F.; SCHUNCK, F.; VANCINE, M. H.; BUTTI, M.; RIBEIRO, M.; PIZO, M. The protected areas network may be insufficient to protect bird diversity in a fragmented tropical hotspot under different climate scenarios. Perspectives in Ecology and Conservation, v. 22, n. 1, p. 63-71, 2024. https://doi.org/10.1016/j.pecon.2023.12.002
TU, H.-M.; FAN, M.-W.; KO, J. C.-J. Different Habitat Types Affect Bird Richness and Evenness. Scientific Reports, v. 10, n. 1, e1221, 2020. https://www.nature.com/articles/s41598-020-58202-4
TUERO, D. T.; FIORINI, V. D.; REBOREDA, J. C. Effects of Shiny Cowbird Molothrus bonariensis parasitism on different components of House Wren Troglodytes aedon reproductive success. Ibis, v. 149, n. 3, p. 521-529, 2007. https://doi.org/10.1111/j.1474-919X.2007.00676.x.
URIBE RESTREPO, D. Ramphocelus flammigerus. 2016. Available on: https://www.cervantesvirtual.com/obra/ramphocelus-flammigerus-850280/. Accessed at: 30 Dec. 2024.
WONG, P. A. Tyrannus melancholicus (tropical kingbird). Animal Diversity Web, 2024. Available on: https://animaldiversity.org/accounts/Tyrannus_melancholicus/. Accessed at: 30 Dec. 2024.
Downloads
Published
Issue
Section
How to Cite
License
Copyright (c) 2025 Nativa

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright for articles published in this journal are the authors, with first publication rights granted to the journal. The journal shows open access, and articles are free to use, with proper attribution, in educational and non-commercial.
The articles published in this journal may be reproduced in part or used as a reference by other authors, provided that the source is quoted.

