PRODUCTIVE IMPACT OF FORAGE GRASSES AND LEGUMES IN THE CENTRAL JUNGLE OF PERU

Authors

DOI:

https://doi.org/10.31413/nat.v12i4.17958


Keywords:

Estabelecimento de pastagem, altura de forragem, produção de massa seca, porcentagem de cobertura, tolerância à acidez do solo

Abstract

The study's objective was to evaluate the establishment and production of forage grasses and legumes in acidic and degraded soils of Puerto Bermúdez, Peru. Two treatments were experimented with, consisting of 3 grasses (Brachiaria decumbens, Andropogon gayanus and Brachiaria dictyoneura) and 12 legumes (Stylosanthes guianensis, Desmodium ovalifolium, Centrosema pubescens, Zornia latifolia, Stylosanthes capitata, Centrosema macrocarpum, Centrosema sp., Centrosema brasiliensis, Centrosema arenarium, Zornia glabra, Aeschynomene histrix, and, Pueraria phaseoloides), in monoculture plots, using a Completely Randomized Design, showing statistically significant differences. The grass that had the highest plant height (73 ± 0.01 cm) was Andropogon gayanus, dry matter (4,325 ± 435.88 kg ha-1), and the percentage of cover (100% m-2) was Brachiaria dictyoneura. The legume that stood out in plant height was Stylosanthes capitata (34 ± 0.01 cm), in dry matter, Stylosanthes guianens (2265 ± 294.95 kg ha-1), and, in percentage of cover (100%), Stylosanthes guianens stood out, Desmodium ovalifolium, Zornia latifolium, Pueraria phaseoloides, respectively. The study's findings highlight the significant differences in the performance of certain grasses and legumes in acidic and degraded soils and the need for further research on associated crops, fertilization, and agronomic management to fully exploit their potential.

Keywords: pasture establishment; forage height; dry mass production; coverage percentage; tolerance to soil acidity.

 

Impacto produtivo das gramíneas e leguminosas forrageiras na Selva Central do Peru

 

RESUMO: O objetivo do estudo foi avaliar o estabelecimento e produção de gramíneas e leguminosas forrageiras em solos ácidos e degradados de Puerto Bermúdez, Peru. Foram experimentados dois tratamentos, compostos por 3 gramíneas (Brachiaria decumbens, Andropogon gayanus e Brachiaria dictyoneura) e 12 leguminosas (Stylosanthes guianensis, Desmodium ovalifolium, Centrosema pubescens, Zornia latifolia, Stylosanthes capitata, Centrosema macrocarpum, Centrosema sp., Centrosema brasiliensis, Centrosema arenarium, Zornia glabra, Aeschynomene histrix e Pueraria phaseoloides), em parcelas de monocultivo, utilizando delineamento inteiramente casualizado, apresentando diferenças estatisticamente significativas. A gramínea que apresentou maior altura de planta (73±0,01 cm) foi Andropogon gayanus, massa seca (4.325±435,88 kg ha-1) e porcentagem de cobertura (100% m-2), foi Brachiaria dictyoneura. A leguminosa que se destacou em altura de planta foi Stylosanthes capitata (34±0,01cm), em massa seca Stylosanthes guianens (2265±294,95 kg ha-1) e, em porcentagem de cobertura (100%), Stylosanthes guianens se destacou, Desmodium ovalifolium, Zornia latifolium, Pueraria phaseoloides, respectivamente. Concluindo que o melhor desempenho é atribuído a uma maior adaptação das gramíneas às condições edáficas limitantes e à sua eficiência fotossintética, enquanto as leguminosas apresentaram menor tolerância à acidez do solo devido ao efeito do alumínio (Al). Mais pesquisas são necessárias, como culturas associadas, fertilização e manejo agronômico.

Palavras-chave: estabelecimento de pastagem; altura de forragem; produção de massa seca; porcentagem de cobertura; tolerância à acidez do solo.

 

References

LEMAYEHU, M.; GEZAHAGN, K.; FEKEDE, F.; GETNET, A. Overview of improved forage and forage seed production in Ethiopia: lessons from fourth livestock development project. International Journal of Agriculture and Biosciences, v. 6, n. 4, p. 217-226, 2017.

ALOTAIBI, M. O.; SALEH, A. M.; SOBRINHO, R. L.; SHETEIWY, M. S.; EL-SAWAH, A. M.; MOHAMMED, A. E.; ELGAWAD, H. A. Arbuscular mycorrhizae mitigate aluminum toxicity and regulate proline metabolism in plants grown in acidic soil. Journal of Fungi, v. 7, n. 7, e531, 2021. https://doi.org/10.3390/jof7070531

ARÉVALO-HERNÁNDEZ, C. O.; ARÉVALO-GARDINI, E.; FARFAN, A.; AMARINGO-GOMEZ, M.; DAYMOND, A.; ZHANG, D.; BALIGAR, V. C. Growth and nutritional responses of juvenile wild and domesticated cacao genotypes to soil acidity. Agronomy, v. 12, n. 12, e3124, 2022. https://doi.org/10.3390/agronomy12123124

BALEHEGN, M.; DUNCAN, A.; TOLERA, A.; AYANTUNDE, A. A.; ISSA, S.; KARIMOU, M.; ZAMPALIGRÉ, N.; ANDRÉ, K.; GNANDA, I.; VARIJAKSHAPANICKER, P.; KEBREAB, E.; DUBEUX, J.; BOOTE, K.; MINTA, M.; FEYISSA, F.; ADESOGAN, A. T. Improving adoption of technologies and interventions for increasing supply of quality livestock feed in low-and middle-income countries. Global Food Security, v. 26, e100372, 2020. https://doi.org/10.1016/j.gfs.2020.100372

BLANCO, H., LAL, R. Soil Conservation and Management. 2 ed. Springer eBooks, 2023. 611p. https://doi.org/10.1007/978-3-031-30340-8

BRÄUTIGAM, A.; GOWIK, U. Photorespiration connects C3 and C4 photosynthesis. Journal of Experimental Botany, v. 67, n. 10, p. 2953-2962, 2016. https://doi.org/10.1093/jxb/erw056

CUI, H. Challenges and approaches to crop improvement through C3-to-C4 engineering. Frontiers in Plant Science, v. 12, e715391, 2021. https://doi.org/10.3389/fpls.2021.715391

DEL AGUILA, K.; BAIQUE, N.; RAMÍREZ, J. S.; DELGADO, A. H. C.; RAMÍREZ, G. V. Estudio estadístico para la introducción de especies mejoradas de pastos en el valle de Pichis, Perú. Investigación Operacional, v. 44, n. 1, p. 62-67, 2023.

JAISWAL, S. K.; NAAMALA, J.; DAKORA, F. D. Nature and mechanisms of aluminum toxicity, tolerance and amelioration in symbiotic legumes and rhizobia. Biology and Fertility of Soils, v. 54, n. 3, p. 309-318, 2018. https://doi.org/10.1007/s00374-018-1262-0

LI, G.; TANG, X.; HOU, Q.; LI, T.; XIE, H.; LU, Z.; ZHANG, T.; LIAO, Y.; WEN, X. Response of soil organic carbon fractions to legume incorporation into cropping system and the factors affecting it: A global meta-analysis. Agriculture, Ecosystems & Environment, v. 342, e108231, 2023. https://doi.org/10.1016/j.agee.2022.108231

LI, X.; ZHANG, X.; ZHAO, Q.; LIAO, H. Genetic improvement of legume roots for adaption to acid soils. The Crop Journal, v. 11, n. 4, p. 1022-1033, 2023. https://doi.org/10.1016/j.cj.2023.04.002

LÓPEZ FONSECA, D.; VIVAS QUILA, N.; CUERVO MULET, R.; RODRIGUEZ MOLANO, C. E. Contribution of forage grasses to biological nitrogen fixation and their response to diazotroph inoculation Revista Mexicana de Ciencias Pecuarias, v. 15, n. 2, p. 446-461, 2024. https://doi.org/10.22319/rmcp.v15i2.6539

MA, J. F.; CHEN, Z. C.; SHEN, R. F. Molecular mechanisms of Al tolerance in gramineous plants. Plant and Soil, v. 381, n. 1-2, p. 1-12, 2014. https://doi.org/10.1007/s11104-014-2073-1

MORENO-CARRILLO, M. A.; HERNÁNDEZ-GARAY, A.; VAQUERA-HUERTA, H.; TREJO-LÓPEZ, C.; ESCALANTE-ESTRADA, J. A.; ZARAGOZA-RAMÍREZ, J. L.; JOAQUÍN-TORRES, B. M. Productividad de siete asociaciones y dos praderas puras de gramíneas y leguminosas en condiciones de pastoreo. Revista Fitotecnia Mexicana, v. 38, n. 1, e101, 2015. https://doi.org/10.35196/rfm.2015.1.101

QUESADA, C. A.; PAZ, C.; OBLITAS MENDOZA, E.; PHILLIPS, O. L.; SAIZ, G.; LLOYD, J. Variations in soil chemical and physical properties explain basin-wide Amazon forest soil carbon concentrations. Soil, v. 6, n. 1, p. 53-88, 2020. https://doi.org/10.5194/soil-6-53-2020

QUIÑONES, M. A.; LUCAS, M. M.; PUEYO, J. J. Adaptive mechanisms make Lupin a choice crop for acidic soils affected by aluminum toxicity. Frontiers in Plant Science, v. 12, e810692, 2022. https://doi.org/10.3389/fpls.2021.810692

RAO, I. M.; MILES, J. W.; BEEBE, S. E.; HORST, W. J. Root adaptations to soils with low fertility and aluminum toxicity. Annals of Botany, v. 118, n. 4, p. 593-605, 2016. https://doi.org/10.1093/aob/mcw073

ROSLING, A.; MIDGLEY, M. G.; CHEEKE, T.; URBINA, H.; FRANSSON, P.; PHILLIPS, R. P. Phosphorus cycling in deciduous forest soil differs between stands dominated by ecto‐ and arbuscular mycorrhizal trees. The New Phytologist, v. 209, n. 3, p. 1184-1195, 2016. https://doi.org/10.1111/nph.13720

RUSDY, M. Grass-legume intercropping for sustainability animal production in the tropics. In: Perspectives in Agriculture Veterinary Science Nutrition and Natural Resources, CAB Reviews, v. 2021, n. 21, 2021. https://doi.org/10.1079/PAVSNNR20211602

SADEGHIAN, S. La acidez del suelo, una limitante común para la producción de café. Avances Técnicos Cenicafé, v. 466, p. 1-12, 2016. https://doi.org/10.38141/10779/0466

SÁNCHEZ, A.; BANDOPADHYAY, S.; ROJAS BRICEÑO, N. B.; BANERJEE, P.; TORRES GUZMÁN, C.; OLIVA, M. Peruvian Amazon disappearing: transformation of protected areas during the last two decades (2001–2019) and potential future deforestation modeling using cloud computing and MaxEnt approach. Journal for Nature Conservation, v. 64, e126081, 2021. https://doi.org/10.1016/j.jnc.2021.126081

SEGURA, H.; ESPINOZA, J. C.; JUNQUAS, C.; TAKAHASHI, K. Evidencing decadal and interdecadal hydroclimatic variability over the Central Andes. Environmental Research Letters, v. 11, n. 9, e094016, 2016. https://doi.org/10.1088/1748-9326/11/9/094016

SILVA, L. S.; DOS SANTOS LAROCA, J. V.; COELHO, A. P.; GONÇALVES, E. C.; GOMES, R. P.; PACHECO, L. P.; CARVALHO, DE F. P.C.; PIRES, C. G.; OLIVEIRA, L. R.; DE SOUZA, A. J. M.; FREITAS, M. C.; CABRAL, A. C. E.; WRUCK, J. F.; DE SOUZA, D. E. Does grass-legume intercropping change soil quality and grain yield in integrated crop-livestock systems?. Applied Soil Ecology, v. 170, e104257, 2022. https://doi.org/10.1016/j.apsoil.2021.104257

SONAWANE, B. V.; SHARWOOD, R. E.; VON CAEMMERER, S.; WHITNEY, S. M.; GHANNOUM, O. Short-term thermal photosynthetic responses of C4 grasses are independent of the biochemical subtype. Journal of Experimental Botany, v. 68, n. 20, p. 5583-5597, 2017. https://doi.org/10.1093/jxb/erx350

STATA, M.; SAGE, T. L.; SAGE, R. F. Mind the gap: the evolutionary engagement of the C4 metabolic cycle in support of net carbon assimilation. Current Opinion in Plant Biology, v. 49, p. 27-34, 2019. https://doi.org/10.1016/j.pbi.2019.04.008

VON CAEMMERER, S.; FURBANK, R. T. Strategies for improving C4 photosynthesis. Current Opinion in Plant Biology, v. 31, p. 125-134, 2016. https://doi.org/10.1016/j.pbi.2016.04.003

WANG, B.; YAN, H.; LIU, H.; PAN, L.; FENG, Z. Keep sustainable livestock production without Grassland degradation: Future cultivated pasture development simulation based on agent-based model. Journal of Cleaner Production, v. 417, e138072, 2023. https://doi.org/10.1016/j.jclepro.2023.138072

ZHANG, H. Causa y efectos de la acidez del suelo: Por qué los suelos se están volviendo más ácidos. Oklahoma: Servicio de Extensión Cooperativa de Oklahoma, 2022. 3p. (PSS-2239) Available on: https://extension.okstate.edu/fact-sheets/print-publications/pss/pss-causa-y-efectos-de-la-acidez-del-suelo.pdf

ZHANG, Y.; WANG, R.; SARDANS, J.; WANG, B.; GU, B.; LI, Y.; LIU, H.; PEÑUELAS, J.; JIANG, Y. Resprouting ability differs among plant functional groups along a soil acidification gradient in a meadow: A rhizosphere perspective. The Journal of Ecology, v. 111, n. 3, p. 631-644, 2023. https://doi.org/10.1111/1365-2745.14051

ZUBIETA, R.; SAAVEDRA, M.; SILVA, Y.; GIRÁLDEZ, L. Spatial analysis and temporal trends of daily precipitation concentration in the Mantaro River basin: central Andes of Peru. Stochastic Environmental Research and Risk Assessment: Research Journal, v. 31, n. 6, p. 1305-1318, 2017. https://doi.org/10.1007/s00477-016-1235-5

ZUQUIM, G.; VAN DONINCK, J.; CHAVES, P. P.; QUESADA, C. A.; RUOKOLAINEN, K.; TUOMISTO, H. Introducing a map of soil base cation concentration, an ecologically relevant GIS-layer for Amazonian forests. Geoderma Regional, v. 33, e00645, 2023. https://doi.org/10.1016/j.geodrs.2023.e00645

Downloads

Published

2024-12-06

Issue

Section

Zootecnia / Animal Husbandry

How to Cite

PRODUCTIVE IMPACT OF FORAGE GRASSES AND LEGUMES IN THE CENTRAL JUNGLE OF PERU . (2024). Nativa, 12(4), 755-763. https://doi.org/10.31413/nat.v12i4.17958

Most read articles by the same author(s)