THE COMPOSITION OF BIOSTIMULANTS APPLIED IN SEED TREATMENT INTERFERES WITH THE SOYBEAN EMERGENCE UNDER WATER DEFICIENCY
DOI:
https://doi.org/10.31413/nat.v12i4.17455Keywords:
Glycine max (L.) Merrill, germination, mineral nutrition, water stressAbstract
ABSTRACT: High physiological quality seeds with high germination and vigor are essential for successful soybean (Glycine max L. Merrill) cultivation, ensuring proper establishment and early development. Biostimulants have shown significant potential to enhance soybean performance, especially under environmental stress, such as water deficit, which impairs germination and emergence. This study evaluated the effects of seed treatments with biostimulants and their interaction with insecticide and fungicide on biometrics, nutrition, and biochemical variables during soybean initial development under water deficit conditions. A randomized block design in an 8×2 factorial scheme was employed, comprising eight seed treatments [control (no biostimulant); Imidacloprid and fungicide (Carboxin + Thiram) (IF); three biostimulants (B1, B2, B3); and their combinations with IF] under two water regimes (100% and 50% of pot capacity), with three replicates. Evaluations 21 days after application included germination, emergence speed, root and shoot length, dry matter, and enzymatic activity. Biostimulants, particularly seaweed- and plant extract-based, improved water deficit tolerance, enhancing germination, emergence, biometrics, enzymatic activity (superoxide dismutase, peroxidase, and catalase), and nutrient uptake (P, K, Mg, Cu, Mn, Zn). However, further studies are needed to assess potential adverse interactions between biostimulants, fungicides, and insecticides.
Keywords: Glycine max (L.) Merrill; germination; mineral nutrition; water stress.
A composição dos bioestimulantes aplicados em tratamento de sementes interfere na emergência de soja sob deficiência hídrica
RESUMO: Sementes de alta qualidade fisiológica, com elevada germinação e vigor, são essenciais para o sucesso do cultivo de soja (Glycine max L. Merrill), garantindo o estabelecimento adequado e o desenvolvimento inicial da cultura. Os bioestimulantes têm demonstrado potencial significativo para melhorar o desempenho da soja, especialmente sob estresse ambiental, como o déficit hídrico, que prejudica a germinação e a emergência. Este estudo avaliou os efeitos do tratamento de sementes com bioestimulantes e sua interação com inseticidas e fungicidas na biometria, nutrição e variáveis bioquímicas durante o desenvolvimento inicial da soja sob déficit hídrico. Foi utilizado delineamento em blocos causalizados, em esquema fatorial 8×2, composto por oito tratamentos de sementes [controle (sem bioestimulante); inseticida Imidacloprido e fungicida (Carboxina + Tiram) (IF); três bioestimulantes (B1, B2, B3); e suas combinações com IF] sob dois regimes hídricos (100% e 50% da capacidade de vaso), com três repetições. As avaliações realizadas 21 dias após a aplicação incluíram germinação, velocidade de emergência, comprimento de raiz e parte aérea, massa seca e atividade enzimática. Bioestimulantes, especialmente à base de extratos de algas e plantas, aumentaram a tolerância ao déficit hídrico, promovendo melhorias na germinação, emergência, biometria, atividade enzimática (superóxido dismutase, peroxidase e catalase) e absorção de nutrientes (P, K, Mg, Cu, Mn, Zn). No entanto, estudos adicionais são necessários para avaliar possíveis interações negativas entre bioestimulantes, fungicidas e inseticidas.
Palavras-chave: Glycine max (L.) Merrill; germinação; nutrição mineral; estresse hídrico.
References
ALTARUGIO, L. M.; LOMAN, M. H.; NIRSCH, M. G.; SILVANO, R. G.; ZAVASCHI, E.; CARNEIRO, L. M. S.; VITTI, G. C.; LUZ, P. H. C.; OTTO, R. Yield performance of soybean and corn subjected to magnesium foliar spray. Pesquisa Agropecuária Brasileira, v. 52, n. 12, p. 1185-1191, 2017. https://doi.org/10.1590/S0100-204X2017001200007
AMARO, H. T. R.; FERNANDES, H. M. F.; ALMEIDA, P. M. A.; PORTO, E. M. V.; DAVID, A. M. S. S. Tratamento de sementes com bioestimulantes e disponibilidade hídrica no desenvolvimento inicial do milho. Magistra, v. 33, p. 1-9, 2023.
ANDRADE, C. L. L.; SILVA, A. G.; CANTÃO, V. C. G.; MELLO, G. B.; SIQUEIRA, G. G. C.; RODRIGUES, R. L. S. Performance of maize seedlings using biostimulant in seed treatment. Científica, v. 46, n. 3, p. 274-282, 2018.
BARZANA, G.; RIOS, J. J.; LOPEZ-ZAPLANA, A.; NICOLAS-ESPINOSA, J.; YEPES-MOLINA, L.; GARCIA-IBAÑEZ, P.; CARVAJAL, M. Interrelations of nutrient and water transporters in plants under abiotic stress. Physiologia Plantarum, v. 171, n. 4, p. 595-619, 2020. https://doi.org/10.1111/ppl.13206 ppl.13206.
BATOOL, R.; UMER, M. J.; HUSSAIN, B.; ANEES, M.; WANG, Z. Molecular mechanisms of superoxide dismutase (SODs)-mediated defense in controlling oxidative stress in plants. In: AFTAB, T.; HAKEEM, K. R. (Eds). Antioxidant defense in plants. Singapore: Springer, 2022. p. 157-179. https://doi.org/10.1007/978-981-16-7981-0_8
BEGUM, N.; HASANUZZAMAN, M.; LI, Y.; AKHTAR, K.; ZHANG, C.; ZHAO, T. Seed germination behavior, growth, physiology and antioxidant metabolism of four contrasting cultivars under combined drought and salinity in soybean. Antioxidants, v. 11, e498, 2022. https://doi.org/10.3390/antiox11030498
BRADÁCOVÁ, K.; WEBER, N. F.; MORAD-TALAB, N.; ASSIM, M.; IMRAN, M.; WEINMANN, M.; NEUMANN, G. Micronutrients (Zn/Mn), seaweed extracts, and plant growth-promoting bacteria as cold-stress protectants in maize. Chemical and Biological Technologies in Agriculture, v. 3, p. 1-10, 2016. https://dx.doi.org/10.1186/s40538-016-0069-1
BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, v. 72, p. 248-254, 1976. https://doi.org/10.1006/abio.1976.9999
BULGARI, R.; FRANZONI, G.; FERRANTE, A. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy, v. 9, n. 6, e306, 2019. https://doi.org/10.3390/agronomy9060306
CAMPOBENEDETTO, C.; GRANGE, E.; MANNINO, G.; VAN ARKEL, J.; BEEKWILDER, J.; KARLOVA, R.; GARABELLO, C.; CONTARTESE, V.; BERTEA, C. M. A biostimulant seed treatment improved heat stress tolerance during cucumber seed germination by acting on the antioxidant system and glyoxylate cycle. Frontiers in Plant Science, v. 11, e386, 2020. https://doi.org/10.3389/fpls.2020.00836
CANELLAS, L. P.; OLIVARES, F. L.; AGUIAR, N. O.; JONES, D. L.; NEBBIOSO, A.; MAZZEI, P.; PICCOLO, A. Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulture, v. 196, p. 15-27, 2014. https://doi.org/10.1016/j.scienta.2015.09.013
CARMO, M. A. P.; CARVALHO, M. L. M.; SANTOS, H. O.; ROCHA, D. K.; OLIVEIRA, J. A.; SOUZA, V. F.; GUARALDO, M. M. S.; MESQUITA, C. A. M. Biostimulants applied to seeds and sweet corn plants under abiotic stress conditions. Brazilian Journal of Development, v. 7, n. 3, p. 31727-31741, 2021. http://dx.doi.org/10.34117/bjdv7n3-747
CARVALHO, E. R.; ROCHA, D. K.; FRAGA JÚNIOR, E. F.; PIRES, R. M. O.; OLIVEIRA, T. F.; PENIDO, A. C. Soil water restriction and performance of soybean seeds treated with phytosanitary products. Brazilian Journal of Agricultural and Environmental Engineering, v. 26, n. 1, p. 59-66, 2022. https://doi.org/10.1590/1807-1929/agriambi.v26n1p59-66
CHOUDHARY, S. K.; JAT, M. K.; MATHUR, A. K. Effect of micronutrient on yield and nutrient uptake in sorghum. Journal of Pharmacognosy and Phytochemistry, v. 6, n. 2, p. 105-108, 2017
CUNHA, R. P.; CORRÊA, M. F.; SCHUCH, L. O. B.; OLIVEIRA, R. C.; ABREU JUNIOR, J. S.; SILVA, J. D. G.; ALMEIDA, T. L. Diferentes tratamentos de sementes sobre o desenvolvimento de plantas de soja. Ciência Rural, v. 45, p. 1761-1767, 2015. http://dx.doi.org/10.1590/0103-8478cr20140742
DU, Y.; ZHAO, Q.; CHEN, L.; YAO, X.; XIE, F. Effect of drought stress at reproductive stages on growth and nitrogen metabolism in soybean. Agronomy, v. 10, e302, 2020. https://doi.org/10.3390/agronomy10020302
FAGAN, E. B.; ONO, E. O.; RODRIGUES, J. D.; SOARES, L. H.; DOURADO NETO, D. Fisiologia vegetal: metabolismo e nutrição mineral. São Paulo: Andrei Editora, 2016. 305p.
FANG, Y.; YABUSAKI, S. B.; AHKAMI, A. H.; CHEN, X.; SCHEIBE, T. D. An efficient three-dimensional rhizosphere modeling capability to study the effect of root system architecture on soil water and reactive transport. Plant and Soil, v. 441, n. 1-2, p. 33-48, 2019. https://link.springer.com/article/10.1007/s11104-019-04068-z
FARIAS, J. R. B.; NEPOMUCENO, A. L.; NEUMAIER, N. Ecofisiologia da soja. Londrina: Embrapa Soja, 2011. 8p. (Circular Técnica, 48)
FAROOQI, Z. U. R.; AYUB, M. A.; REHMAN, M. Z. U.; et al. Regulation of drought stress in plants. In: TRIPATHI, D. K.; SINGH, V. P.; CHAUHAN, D. K.; SHARMA, S.; PRASAD, S. M.; DUBEY, N. K.; RAMAWAT, N. (Eds.). Plant Life Under Changing Environment. Academic Press, 2020. p. 77-104. https://doi.org/10.1016/B978-0-12-818204-8.00004-7
FRANÇA, G. M.; FREIRE, A. L. O.; BATISTA, A. W.; FERREIRA, C. D. O potássio atenua os efeitos do déficit hídrico em mudas de pereiro (Aspidosperma pyrifolium Mart. & Zucc.). Conjecturas, v. 22, n. 2, p. 266-277, 2022. https://dx.doi.org/10.53660/CONJ-662-701
FRANÇA-NETO, J. B.; KRZYZANOWSKI, F. C.; HENNING, A. A.; PÁDUA, G. P.; LORINI, I.; HENNING, F. A. Tecnologia da produção de semente de soja de alta qualidade. Londrina: Embrapa Soja, 2016. 82p. (Documentos, 380)
FRASCA, L. L. M.; NASCENTE, A. S.; LANNA, A. C.; CARVALHO, M. C. S.; COSTA, G. G. Bioestimulantes no crescimento vegetal e desempenho agronômico do feijão-comum de ciclo superprecoce. Agrarian, v. 13, n. 47, p. 27-41, 2020. https://doi.org/10.30612/agrarian.v13i47.8571
GIANNOPOLITIS, C. N.; RIES, S. K. Superoxide dismutase I. Occurrence in higher plants. Plant Physiology, v. 59, n .2, p. 309-314, 1997. https://doi.org/10.1104/pp.59.2.309
GUPTA, S.; KULKARNI, M. G.; WHITE, J. F.; STIRK, W. A.; PAPENFUS, H. B.; DOLEZAL, K.; ÖRDÖG, V.; NORRIE, J.; CRITCHLEY, A. T.; VAN STADEN, J. Categories of various plant biostimulants – mode of application and shelf-life. In: GUPTA, S.; VAN STADEN, J. (Eds.). Biostimulants for crops from seed germination to plant development. Academic Press, 2021. p. 1-60. https://doi.org/10.1016/B978-0-12-823048-0.00018-6
IGHODARO, O. M.; AKINLOYE, O. A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, v. 54, n. 4, p. 287-293, 2017. https://doi.org/10.1016/j.ajme.2017.09.001
KHAEIM, H.; KENDE, Z.; BALLA, I.; GYURICZA, C.; ESER, A.; TARNAWA, Á. The effect of temperature and water stresses on seed germination and seedling growth of wheat (Triticum aestivum L.). Sustainability, v. 14, e3887, 2022. https://doi.org/10.3390/su14073887
KRZYZANOWSKI, F. C.; FRANÇA-NETO, J. B.; HENNING, A. A. A alta qualidade da semente de soja: fator importante para a produção da cultura. Londrina: Embrapa Soja, 2018. 24p. (Circular Técnica, 136)
LAUXEN, L. R.; VILLELA, F. A.; SOARES, R. C. Desempenho fisiológico de sementes de algodão tratadas com tiametoxan. Revista Brasileira de Sementes, v. 32, n. 3, p. 61-68, 2010. https://doi.org/10.1590/S0101-31222010000300007
LEMES, E. S.; MENDONÇA, A. O.; DIAS, L. W.; BRUNES, A. P.; OLVEIRA, S.; FIN, S. S.; MENEGHELLO, G. E. Tratamento de sementes de soja com zinco: efeito na qualidade fisiológica e produtividade. Coloquium Agrariae, v. 13, n. 2, p. 76-86, 2017.
LIU, Y.; XUE, Y.; XIE, B.; ZHU, S.; LU, X.; LIANG, C.; TIAN, J. Complex gene regulation between young and old soybean leaves in responses to manganese toxicity. Plant Physiology and Biochemistry, v. 155, p. 231-242, 2020. https://doi.org/10.1016/j.plaphy.2020.07.002
LUCINI, L.; ROUPHAEL, Y.; CARDARELLI, M.; CANAGUIER, R.; KUMAR, P.; COLLA, G. The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Scientia Horticulturae, v. 182, p. 124-133, 2015. https://dx.doi.org/10.1016/j.scienta.2014.11.022
LUDWIG, E. J.; NUNES, U.L R.; SANTOS, C. V.; ZINI, P. B.; KLEINPAUL, J. A.; BASTIANI, G. G. Water stress on the physiological quality of soybean seeds with tiamethoxam and polymers. Research, Society and Development, v. 12, n. 10, e44121043427, 2023. http://dx.doi.org/10.33448/rsd-v12i10.43427
MAGUIRE, J. D. Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Science, v. 2, n. 1, p. 176-177, 1962. https://doi.org/10.2135/cropsci1962.0011183X000200020033x
MAJKOWSKA-GADOMSKA, J.; FRANCKE, A.; DOBROWOLSKI, A.; MIKULEWICZ, E. The effect of selected biostimulants on seed germination of four plant species. Acta Agrophysica, v. 24, n. 4, p. 591-599, 2017.
MALAVOLTA, E.; VITTI, G. C.; OLIVEIRA, S. A. Avaliação do estado nutricional das plantas: princípios e aplicações. Piracicaba: Potafós, 1997. 319p.
MANDAL, S.; ANAD, U.; LÓPEZ-BUCIO, J.; RADHA, KUMAR, M.; LAL, M. K.; TIWARI, R. K.; DEY, A. Biostimulants and environmental stress mitigation in crops: A novel and emerging approach for agricultural sustainability under climate change. Environmental Research, v. 23, e116357, 2023. https://doi.org/10.1016/j.envres.2023.116357
MARTINS, M. C. C.; OLIVEIRA, A. S. S. S.; SILVA, L. A. A.; SILVA PRIMO, M. G.; LIRA, V. B. C. Biological indicators of oxidative stress [malondialdehyde, catalase, glutathione peroxidase, and superoxide dismutase] and their application in nutrition. In: PATEL, V. B.; PREEDY, V. R. (Eds). Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Cham, 2022. p. 1-25. https://doi.org/10.1007/978-3-030-81304-8_49-1
MEDEIROS, D. S.; ALVES, E. U.; SENA, D. V. A.; SILVA, E. O.; ARAÚJO, L. R. Desempenho fisiológico de sementes de gergelim submetidas a estresse hídrico em diferentes temperaturas. Semina: Ciências Agrárias, v. 36, n. 5, p. 3069-3076, 2015. https://doi.org/10.5433/1679-0359.2015v36n5p3069
MEDEIROS, J. C.; CARVALHO, E. R.; ANDRADE, D. B.; MORAES, L. F. S.; LIMA, J. M. E.; MASSA, M. A. F. Quality of corn seed industrial treatment (IST) and on-farm treatment (OFT) in Brazilian agribusiness. Journal of Seed Science, v. 45, e202345017, 2023. http://dx.doi.org/10.1590/2317-1545v45268856
MIGOCKA, M.; MALAS, K. Plant responses to copper: molecular and regulatory mechanisms of copper uptake, distribution and accumulation in plants. In: HOSSAIN, M. A.; KAMIYA, T.; BURRITT, D. J.; TRAN, P. L.-S., FUJIWARA, T. (Eds.). Plant micronutrient use efficiency: molecular and genomic perspectives in crop plants. London: Academic Press, 2018. p. 71-86. https://doi.org/10.1016/B978-0-0-12-812104-7.00005-8
OGUNKANMI, L.; MACCARTHY, D. S.; ADIKU, S. G. K. Impact of extreme temperature and soil water stress on the growth and yield of soybean (Glycine max (L) Merrill). Agriculture, v. 12, n. 1, e43, 2022. https://doi.org/10.3390/agriculture12010043
PANDEY, P.; RAMEGOWDA, V.; SENTHIL-KUMAR, M. Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Frontiers in Plant Science, v. 6, e723, 2015. https://doi.org/10.3389/fpls.2015.00723
PASZKIEWICZ, G.; GUALBERTO, J. M.; BENAMAR, A.; MACHEREL, D.; LOGAN, D. C. Arabidopsis seed mitochondria are bioenergetically active immediately upon imbibition and specialize via biogenesis in preparation for autotrophic growth. Plant Cell, v. 29, n. 1, p. 109-128, 2017. https://doi.org/10.1105/tpc.16.00700
PEIXOTO, P. H. P.; CAMBRAIA, J.; SANT’ANNA, R.; MOSQUIM, P. R.; MOREIRA, M. A. Aluminium effects on lipid peroxidation and on the activities of enzymes of oxidative metabolism in sorghum. Revista Brasileira de Fisiologia Vegetal, v. 11, n. 3, p. 137-143, 1999.
PEREIRA, L. C.; GARCIA, M. M.; BRACCINI, A. L.; PIANA, S. C.; FERRI, G. C.; MATERA, T. C.; FELBER, P. H.; MARTELI, D. C. V. Efeito da adição de biorregulador ao tratamento industrial sobre a qualidade de sementes de soja (Glycine max (L.) Merr.) aos sessenta dias de armazenamento convencional. Revista Colombiana de Investigaciones Agroindustriales, v. 3, n. 2, p. 15-22, 2016. https://doi.org/10.23850/issn.2422-0582
RAHMAN, M. A.; ALAM, I.; SHARMIN, S. A.; KABIR, A. H.; KIM, Y.-G.; LIU, G.; LEE, B.-H. Physiological and proteomic analyses reveal the protective roles of exogenous hydrogen peroxide in alleviating drought stress in soybean plants. Plant Biotechnology Reports, v. 15, p. 805-818, 2021. https://doi.org/10.1007/s11816-021-00719-9
REHMAN, T.; TABASSUM, B.; YOUSAF, S.; SARWAR, G.; QAISAR, U. Consequences of drought stress encountered during seedling stage on physiology and yield of cultivated cotton. Frontiers in Plant Science, v. 13, e906444, 2022. https://doi.org/10.3389/fpls.2022.906444
REPKE, R. A.; SILVA, D. M. R.; SANTOS, J. C. C.; SILVA, M. A. Increased soybean tolerance to high-temperature through biostimulant based on Ascophyllum nodosum (L.) seaweed extract. Journal of Applied Phycology, v. 34, p. 3205-3218, 2022. http://dx.doi.org/10.1007/s10811-022-02821-z
ROSA, V. R.; SANTOS, A. L. F.; SILVA, A. A.; SAB, M. P. V.; GERMINO, G. H.; CARDOSO, F. B.; SILVA, M. A. Increased soybean tolerance to water deficiency through biostimulant based on fulvic acids and Ascophyllum nodosum (L.) seaweed extract. Plant Physiology and Biochemistry, v. 158, p. 228-243, 2021. https://doi.org/10.1016/j.plaphy.2020.11.008
ROUPHAEL, Y.; COLLA, G. Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Frontiers in Plant Science, v. 9, e1655, 2018. http://dx.doi.org/10.3389/fpls.2018.01655
SHUCKLA, P. S.; MANTIN, E. G.; ADIL, M.; BAJPAI, S.; CRITCHLEY, A. T.; PRITHIVIRAJ, B. Ascophyllum nodosum-based biostimulants: sustainable applications in agriculture for the stimulation of plant growth, stress tolerance and disease management. Frontiers in Plant Science, v. 10, e665, 2019. https://doi.org/10.3389/fpls.2019.00655
SILVA, A. M. P.; OLIVEIRA, G. P.; NERES, D. C. C. Germinação e Vigor de Sementes de soja Submetidas ao Tratamentos com Substâncias Bioativas. Caderno de Publicação Univag, n. 8, e795, 2018. https://doi.org/10.18312/cadernounivag.v0i08.795
SILVA, L. M.; BERTI, M. P. S. Manganese in soil and plants: a review. Scientific Eletronic Archives, v. 15, n. 3, p. 21-25, 2022. http://dx.doi.org/10.36560/15320221512
SOARES, M. M. ; SILVA, L. J. ; OLIVEIRA, G. L. ; SEKITA, M. C. ; DIAS, D. C. F. S. Endogenous level of phosphorous in soya bean seeds and the relationship with physiological quality, oil and protein content. Seed Science and Technology, v. 42, n. 3, p. 433-443, 2014. http://dx.doi.org/10.15258/sst.2014.42.3.09
SOURESHJANI, H. K.; NEZAMI, A.; KAFI, M.; TADAYON, M. Responses of two common bean (Phaseolus vulgaris L.) genotypes to deficit irrigation. Agricultural Water Management, v. 213, p. 270-279, 2019. https://doi.org/10.1016/j.agwat.2018.09.038
STEINER, F.; ZUFFO, A. M.; ZOZ, T.; ZOZ, A.; ZOZ, J. Drought tolerance of wheat and black oat crops at early stages of seedling growth. Revista de Ciências Agrárias, v. 40, n. 3, p. 576-586, 2017. http://dx.doi.org/10.19084/RCA16118
TAIZ, L.; ZEIGER, E.; MØLLER, I. M.; MURPHY, A. Fisiologia e Desenvolvimento Vegetal. Artmed: Porto Alegre, 2017. 858p.
TURAN, M.; EKICI, E. Y. M; ARGIN, S. Effect of biostimulants on yield and quality of cherry tomatoes grown in fertile and stressed soils. American Society for Horticultural Science, v. 56, n. 4, p. 414-423, 2021. http://dx.doi.org/10.21273/HORTSCI15568-20
VAN OOSTEN, M. J.; PEPE, O.; PASCALE, S.; SILLETTI, S.; MAGGIO, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technology in Agriculture, v.4, n.5, 2017. DOI: https://chembioagro.springeropen.com/articles/10.1186/s40538-017-0089-5.
VASCONCELOS, C. F.; CHAVES, H. G. Biostimulants and their role in improving plant growth under abiotic stresses. In: MIRMAJLESSI, S. M.; RADHAKRISHNAN, R. (Eds.). Biostimulants in Plant Science. IntechOpen, 2020. https://doi.org/10.5772/intechopen.88829
WANG, B.; ZHANG, J.; PEI, D.; YU, L. Combined effects of water stress and salinity on growth, physiological, and biochemical traits in two walnut genotypes. Physiologia Plantarum, v. 172, n. 1, p. 176-187, 2021. https://doi.org/10.1111/ppl.13316
XU, C.; LESKOVAR, D. Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition valued under drought stress. Scientia Horticulturae, v. 183, p. 39-47, 2015. https://doi.org/10.1016/j.scienta.2014.12.004
XU, Q. Q.; SAMI, A.; ZHANG, H.; JIN, X. Z.; ZHENG, W. Y.; ZHU, Z. Y.; WU, L. L.; LEI, Y. H.; CHEN, Z. P.; LI, Y.; YU, Y.; ZHANG, F. G.; ZHOU, K. J.; ZHU, Z. H. Combined influence of low temperature and drought on different varieties of rapeseed (Brassica napus L.). South African Journal of Botany, v. 147, p. 400-414, 2022. https://doi.org/10.1016/j.sajb.2022.02.003
ZHANG, Y. B.; YANG, S. L.; DAO, J. M.; DENG, J.; SHAHZAD, A. N.; FAN, X.; LI, R. D.; QUAN, Y. J.; BUKHARI, S. A. H.; ZENG, Z. H. Drought-induced alterations in photosynthetic, ultrastructural and biochemical traits of contrasting sugarcane genotypes. PLoS ONE, v. 15, n. 7, e0235845, 2020. https://doi.org/10.1371/journal.pone.0235845
Downloads
Published
Issue
Section
How to Cite
License
Copyright (c) 2024 Nativa

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright for articles published in this journal are the authors, with first publication rights granted to the journal. The journal shows open access, and articles are free to use, with proper attribution, in educational and non-commercial.
The articles published in this journal may be reproduced in part or used as a reference by other authors, provided that the source is quoted.

