REDUCTION OF THE METHANE EMISSIONS ON LIVESTOCK SHIPS TO MITIGATE GREENHOUSE GAS EMISSIONS AND PROMOTE FUTURE MARITIME TRANSPORT SUSTAINABILITY
DOI:
10.31413/nat.v12i3.18180Palavras-chave:
climate change, international maritime organization, Zero Emissions Livestock ProjectResumo
One of the main causes of climate change and global warming is greenhouse gas emissions. Livestock makes up 15% of the world's greenhouse gases (GHG), whereas maritime shipping accounts for 3%. Cattle can produce about 500 grams of methane a day per cow. This study demonstrates that livestock ships are an extremely high source of methane emissions. This study also offers innovative scientific techniques for lowering methane gas emissions from livestock ships, techniques that you, as researchers, scientists, environmentalists, and policymakers, can help implement. The MV Gelbray Express Livestock ship was selected to investigate the overall emissions generated by the main engine and the livestock on board. Main engine CO2 emissions and livestock CO2 equivalent emissions are theoretically calculated during 24-hour sailing under engine full load and livestock full capacity. The study revealed that livestock CO2 equivalent emissions account for 43% of the total CO2 emissions emitted by the engine and the livestock. ZELP (Zero Emissions Livestock Project) has patented a unique catalytic technique for capturing and neutralizing methane generated during enteric fermentation in ruminant animals such as cows to decrease livestock methane emissions. Theoretical results show that using the ZELP mask reduces CO2 equivalent emissions by 58 000 kg per day at a livestock capacity of 4000 cattle onboard the MV Gelbray Express Livestock ship.
Keywords: climate change; international maritime organization; Zero Emissions Livestock Project.
Redução das emissões de metano em navios de transporte de gado para mitigar as emissões de gases com efeito de estufa e promover a sustentabilidade marítima transporte futura
RESUMO: Uma das principais causas das mudanças climáticas e do aquecimento global são as emissões de gases de efeito estufa. A pecuária representa 15% dos gases de efeito estufa (GEE) do mundo, enquanto o transporte marítimo é responsável por 3%. O gado pode produzir cerca de 500 gramas de metano por dia por vaca. Este estudo demonstra que os navios de transporte de gado são uma fonte extremamente alta de emissões de metano. Este estudo também oferece técnicas científicas inovadoras para reduzir as emissões de gás metano de navios de transporte de gado, técnicas que você, como pesquisadores, cientistas, ambientalistas e formuladores de políticas, pode ajudar a implementar. O navio de transporte de gado MV Gelbray Express foi selecionado para investigar as emissões gerais geradas pelo motor principal e pelo gado a bordo. As emissões de CO2 do motor principal e as emissões equivalentes de CO2 do gado são calculadas teoricamente durante a navegação de 24 horas sob carga total do motor e capacidade total do gado. O estudo revelou que as emissões equivalentes de CO2 do gado são responsáveis por 43% das emissões totais de CO2 emitidas pelo motor e pelo gado. O ZELP (Zero Emissions Livestock Project) patenteou uma técnica catalítica exclusiva para capturar e neutralizar o metano gerado durante a fermentação entérica em animais ruminantes, como vacas, para diminuir as emissões de metano do gado. Resultados teóricos mostram que o uso da máscara ZELP reduz as emissões de CO2 equivalente em 58.000 kg por dia em uma capacidade de gado de 4.000 cabeças de gado a bordo do navio MV Gelbray Express Livestock.
Palavras-chave: mudança climática; organização marítima internacional; Projeto Pecuária Emissão Zero.
Referências
ELKAFAS, A. G.; ELGOHARY, M. M.; SHOUMAN, M. R. Numerical analysis of economic and environmental benefits of marine fuel conversion from diesel oil to natural gas for container ships. Environmental Science and Pollution Research, v. 28, p. 15210-15222, 2021. https://doi.org/10.1007/s11356-020-11639-6.
AL-ENAZI, A.; OKONKWO, E. C.; BIÇER, Y.; AL‐ANSARI, T. A review of cleaner alternative fuels for maritime transportation. Energy Reports, v. 7, p. 1962-1985, 2021. https://doi.org/10.1016/j.egyr.2021.03.036
ALQARNI, D. S.; LEE, C. W.; KNOWLES, G. P.; VOGT, C.; MARSHALL, M.; GENGENBACH, T. R.; CHAFFEE, A. L. Ru-zirconia catalyst derived from MIL140C for carbon dioxide conversion to methane. Catalysis Today, v. 371, p. 120-133, 2021. https://doi.org/10.1016/j.cattod.2020.07.080
AMMAR, N. R.; SEDDIEK, I. S. Enhancing energy efficiency for new generations of containerized shipping. Ocean Engineering, v. 215, e107887, 2020. https://doi.org/10.1016/j.oceaneng.2020.107887
BROUČEK, J. Production of Methane Emissions from Ruminant Husbandry: A Review. Journal of Environmental Protection, v. 5, n. 15, p. 1482-1493, 2014. https://doi.org/10.4236/jep.2014.515141
CHOW, W. L.; CHONG, S.; LIM, J. W.; CHAN, Y. J.; CHONG, M. F.; TIONG, T. J.; CHIN, J. K.; PAN, G. T. Anaerobic Co-Digestion of Wastewater sludge: A review of potential Co-Substrates and operating factors for improved methane yield. Processes, v. 8, n. 1, e39, 2020. https://doi.org/10.3390/pr8010039
ELMALLAH, M.; ELGOHARY, M. M.; SHOUMAN, M. R. The effect of air chamber geometrical design for enhancing the output power of oscillating water column wave energy converter. Marine Technology Society Journal, v. 57, n. 1, p. 122-129, 2023. https://doi.org/10.4031/mtsj.57.1.14
FAZLOLLAHI, S.; MARÉCHAL, F. Multi-objective, multi-period optimization of biomass conversion technologies using evolutionary algorithms and mixed integer linear programming (MILP). Applied Thermal Engineering, v. 50, n. 2, p. 1504-1513, 2013. https://doi.org/10.1016/j.applthermaleng.2011.11.035
FAZLOLLAHI, S.; MANDEL, P.; BECKER, G.; MARÉCHAL, F. Methods for multi-objective investment and operating optimization of complex energy systems. Energy, v. 45, n. 1, p. 12-22, 2012. https://doi.org/10.1016/j.energy.2012.02.046
GROVE, H.; CLOUSE, M. Zero net emissions goals: Challenges for boards. Corporate Board: Role, Duties & Composition, v. 17, n. 2, p. 54-69, 2021. https://doi.org/10.22495/cbv17i2art5
HUAN, T.; FAN, H.; LEI, W.; GUO-QIANG, Z. Options and evaluations on propulsion systems of LNG carriers. In: Propulsion Systems. IntechOpen eBooks, 2019. https://doi.org/10.5772/intechopen.82154
HUSSIN, F.; AROUA, M. K. Recent trends in the development of adsorption technologies for carbon dioxide capture: A brief literature and patent reviews (2014-2018). Journal of Cleaner Production, v. 253, e119707, 2020. https://doi.org/10.1016/j.jclepro.2019.119707
HWANGBO, S.; LEE, I.; HAN, J. Mathematical model to optimize design of integrated utility supply network and future global hydrogen supply network under demand uncertainty. Applied Energy, v. 195, p. 257-267, 2017. https://doi.org/10.1016/j.apenergy.2017.03.041
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 2021.
JEFFRY, L.; ONG, M. Y.; NOMANBHAY, S.; MOFIJUR, M.; MUBASHIR, M.; SHOW, P. L. Greenhouse gases utilization: A review. Fuel, v. 301, e121017, 2021. https://doi.org/10.1016/j.fuel.2021.121017
JOUNG, T.; KANG, S.; LEE, J.; AHN, J. The IMO initial strategy for reducing Greenhouse Gas (GHG) emissions, and its follow-up actions towards 2050. Journal of International Maritime Safety, Environmental Affairs, and Shipping, v. 4, n. 1, p. 1-7, 2020. https://doi.org/10.1080/25725084.2019.1707938
KRÓLICZEWSKA, B., PECKA-KIEŁB, E.; BUJOK, J. Strategies Used to Reduce Methane Emissions from Ruminants: Controversies and Issues. Agriculture, v. 13, n. 3, e602, 2023. https://doi.org/10.3390/agriculture13030602
KUMARI, S.; DAHIYA, R.; NAIK, S.; HILOIDHARI, M.; THAKUR, I. S.; SHARAWAT, I.; KUMARI, N. Projection of methane emissions from livestock through enteric fermentation: A case study from India. Environmental Development, v. 20, p. 31-44, 2016. https://doi.org/10.1016/j.envdev.2016.08.001
LINDSTAD, E.; LAGEMANN, B.; RIALLAND, A.; GAMLEM, G. M.; VALLAND, A. Reduction of maritime GHG emissions and the potential role of E-fuels. Transportation Research Part D: Transport and Environment, v. 101, e103075, 2021. https://doi.org/10.1016/j.trd.2021.103075
LIU, D.; GUO, X.; XIAO, B. What causes growth of global greenhouse gas emissions? Evidence from 40 countries. Science of the Total Environment, v. 661, p. 750-766, 2019. https://doi.org/10.1016/j.scitotenv.2019.01.197
MAR, K. A.; UNGER, C.; WALDERDORFF, L.; BUTLER, T. Beyond CO2 equivalence: The impacts of methane on climate, ecosystems, and health. Environmental Science & Policy, v. 134, p. 127-136, 2022. https://doi.org/10.1016/j.envsci.2022.03.027
MEINSHAUSEN, M.; MEINSHAUSEN, N.; HARE, B.; RAPER, S. C. B.; FRIELER, K.; KNUTTI, R.; FRAME, D. J.; ALLEN, M. Greenhouse gas emission targets for limiting global warming to 2 °C. Nature, v. 458, n. 7242, p. 1158-1162, 2009. https://doi.org/10.1038/nature08017.
MIKHAYLOV, A.; MOISEEV, N.; АЛЕШИН, К. А.; BURKHARDT, T. Global climate change and greenhouse effect. Entrepreneurship and Sustainability Issues, v. 7, n. 4, p. 2897-2913, 2020. https://doi.org/10.9770/jesi.2020.7.4(21
MUNDRA, I.; LOCKLEY, A. (2023). Emergent methane mitigation and removal approaches: A review. Atmospheric Environment, v. X, e100223, 2023. https://doi.org/10.1016/j.aeaoa.2023.100223
REHMATULLA, N., CALLEYA, J.; SMITH, T. The implementation of technical energy efficiency and CO2 emission reduction measures in shipping. Ocean Engineering, v. 139, p. 184-197, 2017. https://doi.org/10.1016/j.oceaneng.2017.04.029
REISINGER, A.; CLARK, H.; COWIE, A.; EMMET‐BOOTH, J.; FISCHER, C. G.; HERRERO, M.; HOWDEN, M.; LEAHY, S. C. How necessary and feasible are reductions of methane emissions from livestock to support stringent temperature goals? Philosophical Transactions of the Royal Society A, v. 379, n. 2210, e20200452, 2021. https://doi.org/10.1098/rsta.2020.0452
REVELL, L. E.; STENKE, A.; ROZANOV, E.; BALL, W. T.; LOSSOW, S.; PETER, T. The role of methane in projections of 21st century stratospheric water vapour. Atmospheric Chemistry and Physics, v. 16, n. 20, p. 13067-13080, 2016. https://doi.org/10.5194/acp-16-13067-2016
SANGAIAH, A. K.; TIRKOLAEE, E. B.; GOLI, A.; DEHNAVI-ARANI, S. Robust optimization and mixed-integer linear programming model for LNG supply chain planning problem. Soft Computing, v. 24, n. 11, p. 7885-7905, 2019. https://doi.org/10.1007/s00500-019-04010-6
SANTOS, V. A. D.; SILVA, P. P. da; SERRANO, L. The maritime sector and its problematic decarbonization: A Systematic review of the contribution of alternative fuels. Energies, v. 15, n. 10, e3571, 2022. https://doi.org/10.3390/en15103571
SERRA, P.; FANCELLO, G. Towards the IMO’s GHG goals: A critical overview of the perspectives and challenges of the main options for decarbonizing international shipping. Sustainability, v. 12, n. 8, e3220, 2020. https://doi.org/10.3390/su12083220
THORPE, A. Enteric fermentation and ruminant eructation: the role (and control?) of methane in the climate change debate. Climatic Change, v. 93, n. 3-4, p. 407-431, 2008. https://doi.org/10.1007/s10584-008-9506-x
XING, H.; SPENCE, S.; CHEN, H. A comprehensive review on countermeasures for CO2 emissions from ships. Renewable & Sustainable Energy Reviews, v. 134, e110222, 2020. https://doi.org/10.1016/j.rser.2020.110222
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Nativa
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Direitos Autorais para artigos publicados nesta revista são do autor, com direitos de primeira publicação para a revista. Em virtude de a aparecerem nesta revista de acesso público, os artigos são de uso gratuito, com atribuições próprias, em aplicações educacionais e não-comerciais.
A artigos publicados nessa revista, podem ser reproduzidos parcialmente ou utilizados como referência por outros autores, desde que seja cita a fonte, ou seja, a Revista Nativa.
Copyright for articles published in this journal are the authors, with first publication rights granted to the journal. The journal shows open access, and articles are free to use, with proper attribution, in educational and non-commercial.
The articles published in this journal may be reproduced in part or used as a reference by other authors, provided that the source is quoted.