REDUCTION OF THE METHANE EMISSIONS ON LIVESTOCK SHIPS TO MITIGATE GREENHOUSE GAS EMISSIONS AND PROMOTE FUTURE MARITIME TRANSPORT SUSTAINABILITY

Autores

  • Mamdouh Elmallah mamduohelmallah@aast.edu
    Department of Marine Engineering Technology, College of Maritime Transport & Technology, Arab Academy for Science, Technology, and Maritime Transport, Egypt. https://orcid.org/0000-0002-2783-5003
  • Mohamed Shouman shouman810@gmail.com
    Department of Marine Engineering Technology, College of Maritime Transport & Technology, Arab Academy for Science, Technology, and Maritime Transport, Egypt. https://orcid.org/0000-0003-3638-9815
  • Mohamed Elgohary prof.morsy@gmail.com
    Department of Naval Architecture and Marine Engineering, Faculty of Engineering, Alexandria University, Egypt. https://orcid.org/0000-0003-4441-7812

DOI:

10.31413/nat.v12i3.18180

Palavras-chave:

climate change, international maritime organization, Zero Emissions Livestock Project

Resumo

One of the main causes of climate change and global warming is greenhouse gas emissions. Livestock makes up 15% of the world's greenhouse gases (GHG), whereas maritime shipping accounts for 3%. Cattle can produce about 500 grams of methane a day per cow. This study demonstrates that livestock ships are an extremely high source of methane emissions. This study also offers innovative scientific techniques for lowering methane gas emissions from livestock ships, techniques that you, as researchers, scientists, environmentalists, and policymakers, can help implement. The MV Gelbray Express Livestock ship was selected to investigate the overall emissions generated by the main engine and the livestock on board. Main engine CO2 emissions and livestock CO2 equivalent emissions are theoretically calculated during 24-hour sailing under engine full load and livestock full capacity. The study revealed that livestock CO2 equivalent emissions account for 43% of the total CO2 emissions emitted by the engine and the livestock. ZELP (Zero Emissions Livestock Project) has patented a unique catalytic technique for capturing and neutralizing methane generated during enteric fermentation in ruminant animals such as cows to decrease livestock methane emissions. Theoretical results show that using the ZELP mask reduces CO2 equivalent emissions by 58 000 kg per day at a livestock capacity of 4000 cattle onboard the MV Gelbray Express Livestock ship.

Keywords: climate change; international maritime organization; Zero Emissions Livestock Project.

 

Redução das emissões de metano em navios de transporte de gado para mitigar as emissões de gases com efeito de estufa e promover a sustentabilidade marítima transporte futura

 

RESUMO: Uma das principais causas das mudanças climáticas e do aquecimento global são as emissões de gases de efeito estufa. A pecuária representa 15% dos gases de efeito estufa (GEE) do mundo, enquanto o transporte marítimo é responsável por 3%. O gado pode produzir cerca de 500 gramas de metano por dia por vaca. Este estudo demonstra que os navios de transporte de gado são uma fonte extremamente alta de emissões de metano. Este estudo também oferece técnicas científicas inovadoras para reduzir as emissões de gás metano de navios de transporte de gado, técnicas que você, como pesquisadores, cientistas, ambientalistas e formuladores de políticas, pode ajudar a implementar. O navio de transporte de gado MV Gelbray Express foi selecionado para investigar as emissões gerais geradas pelo motor principal e pelo gado a bordo. As emissões de CO2 do motor principal e as emissões equivalentes de CO2 do gado são calculadas teoricamente durante a navegação de 24 horas sob carga total do motor e capacidade total do gado. O estudo revelou que as emissões equivalentes de CO2 do gado são responsáveis ​​por 43% das emissões totais de CO2 emitidas pelo motor e pelo gado. O ZELP (Zero Emissions Livestock Project) patenteou uma técnica catalítica exclusiva para capturar e neutralizar o metano gerado durante a fermentação entérica em animais ruminantes, como vacas, para diminuir as emissões de metano do gado. Resultados teóricos mostram que o uso da máscara ZELP reduz as emissões de CO2 equivalente em 58.000 kg por dia em uma capacidade de gado de 4.000 cabeças de gado a bordo do navio MV Gelbray Express Livestock.

Palavras-chave: mudança climática; organização marítima internacional; Projeto Pecuária Emissão Zero.

Referências

ELKAFAS, A. G.; ELGOHARY, M. M.; SHOUMAN, M. R. Numerical analysis of economic and environmental benefits of marine fuel conversion from diesel oil to natural gas for container ships. Environmental Science and Pollution Research, v. 28, p. 15210-15222, 2021. https://doi.org/10.1007/s11356-020-11639-6.

AL-ENAZI, A.; OKONKWO, E. C.; BIÇER, Y.; AL‐ANSARI, T. A review of cleaner alternative fuels for maritime transportation. Energy Reports, v. 7, p. 1962-1985, 2021. https://doi.org/10.1016/j.egyr.2021.03.036

ALQARNI, D. S.; LEE, C. W.; KNOWLES, G. P.; VOGT, C.; MARSHALL, M.; GENGENBACH, T. R.; CHAFFEE, A. L. Ru-zirconia catalyst derived from MIL140C for carbon dioxide conversion to methane. Catalysis Today, v. 371, p. 120-133, 2021. https://doi.org/10.1016/j.cattod.2020.07.080

AMMAR, N. R.; SEDDIEK, I. S. Enhancing energy efficiency for new generations of containerized shipping. Ocean Engineering, v. 215, e107887, 2020. https://doi.org/10.1016/j.oceaneng.2020.107887

BROUČEK, J. Production of Methane Emissions from Ruminant Husbandry: A Review. Journal of Environmental Protection, v. 5, n. 15, p. 1482-1493, 2014. https://doi.org/10.4236/jep.2014.515141

CHOW, W. L.; CHONG, S.; LIM, J. W.; CHAN, Y. J.; CHONG, M. F.; TIONG, T. J.; CHIN, J. K.; PAN, G. T. Anaerobic Co-Digestion of Wastewater sludge: A review of potential Co-Substrates and operating factors for improved methane yield. Processes, v. 8, n. 1, e39, 2020. https://doi.org/10.3390/pr8010039

ELMALLAH, M.; ELGOHARY, M. M.; SHOUMAN, M. R. The effect of air chamber geometrical design for enhancing the output power of oscillating water column wave energy converter. Marine Technology Society Journal, v. 57, n. 1, p. 122-129, 2023. https://doi.org/10.4031/mtsj.57.1.14

FAZLOLLAHI, S.; MARÉCHAL, F. Multi-objective, multi-period optimization of biomass conversion technologies using evolutionary algorithms and mixed integer linear programming (MILP). Applied Thermal Engineering, v. 50, n. 2, p. 1504-1513, 2013. https://doi.org/10.1016/j.applthermaleng.2011.11.035

FAZLOLLAHI, S.; MANDEL, P.; BECKER, G.; MARÉCHAL, F. Methods for multi-objective investment and operating optimization of complex energy systems. Energy, v. 45, n. 1, p. 12-22, 2012. https://doi.org/10.1016/j.energy.2012.02.046

GROVE, H.; CLOUSE, M. Zero net emissions goals: Challenges for boards. Corporate Board: Role, Duties & Composition, v. 17, n. 2, p. 54-69, 2021. https://doi.org/10.22495/cbv17i2art5

HUAN, T.; FAN, H.; LEI, W.; GUO-QIANG, Z. Options and evaluations on propulsion systems of LNG carriers. In: Propulsion Systems. IntechOpen eBooks, 2019. https://doi.org/10.5772/intechopen.82154

HUSSIN, F.; AROUA, M. K. Recent trends in the development of adsorption technologies for carbon dioxide capture: A brief literature and patent reviews (2014-2018). Journal of Cleaner Production, v. 253, e119707, 2020. https://doi.org/10.1016/j.jclepro.2019.119707

HWANGBO, S.; LEE, I.; HAN, J. Mathematical model to optimize design of integrated utility supply network and future global hydrogen supply network under demand uncertainty. Applied Energy, v. 195, p. 257-267, 2017. https://doi.org/10.1016/j.apenergy.2017.03.041

IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 2021.

JEFFRY, L.; ONG, M. Y.; NOMANBHAY, S.; MOFIJUR, M.; MUBASHIR, M.; SHOW, P. L. Greenhouse gases utilization: A review. Fuel, v. 301, e121017, 2021. https://doi.org/10.1016/j.fuel.2021.121017

JOUNG, T.; KANG, S.; LEE, J.; AHN, J. The IMO initial strategy for reducing Greenhouse Gas (GHG) emissions, and its follow-up actions towards 2050. Journal of International Maritime Safety, Environmental Affairs, and Shipping, v. 4, n. 1, p. 1-7, 2020. https://doi.org/10.1080/25725084.2019.1707938

KRÓLICZEWSKA, B., PECKA-KIEŁB, E.; BUJOK, J. Strategies Used to Reduce Methane Emissions from Ruminants: Controversies and Issues. Agriculture, v. 13, n. 3, e602, 2023. https://doi.org/10.3390/agriculture13030602

KUMARI, S.; DAHIYA, R.; NAIK, S.; HILOIDHARI, M.; THAKUR, I. S.; SHARAWAT, I.; KUMARI, N. Projection of methane emissions from livestock through enteric fermentation: A case study from India. Environmental Development, v. 20, p. 31-44, 2016. https://doi.org/10.1016/j.envdev.2016.08.001

LINDSTAD, E.; LAGEMANN, B.; RIALLAND, A.; GAMLEM, G. M.; VALLAND, A. Reduction of maritime GHG emissions and the potential role of E-fuels. Transportation Research Part D: Transport and Environment, v. 101, e103075, 2021. https://doi.org/10.1016/j.trd.2021.103075

LIU, D.; GUO, X.; XIAO, B. What causes growth of global greenhouse gas emissions? Evidence from 40 countries. Science of the Total Environment, v. 661, p. 750-766, 2019. https://doi.org/10.1016/j.scitotenv.2019.01.197

MAR, K. A.; UNGER, C.; WALDERDORFF, L.; BUTLER, T. Beyond CO2 equivalence: The impacts of methane on climate, ecosystems, and health. Environmental Science & Policy, v. 134, p. 127-136, 2022. https://doi.org/10.1016/j.envsci.2022.03.027

MEINSHAUSEN, M.; MEINSHAUSEN, N.; HARE, B.; RAPER, S. C. B.; FRIELER, K.; KNUTTI, R.; FRAME, D. J.; ALLEN, M. Greenhouse gas emission targets for limiting global warming to 2 °C. Nature, v. 458, n. 7242, p. 1158-1162, 2009. https://doi.org/10.1038/nature08017.

MIKHAYLOV, A.; MOISEEV, N.; АЛЕШИН, К. А.; BURKHARDT, T. Global climate change and greenhouse effect. Entrepreneurship and Sustainability Issues, v. 7, n. 4, p. 2897-2913, 2020. https://doi.org/10.9770/jesi.2020.7.4(21

MUNDRA, I.; LOCKLEY, A. (2023). Emergent methane mitigation and removal approaches: A review. Atmospheric Environment, v. X, e100223, 2023. https://doi.org/10.1016/j.aeaoa.2023.100223

REHMATULLA, N., CALLEYA, J.; SMITH, T. The implementation of technical energy efficiency and CO2 emission reduction measures in shipping. Ocean Engineering, v. 139, p. 184-197, 2017. https://doi.org/10.1016/j.oceaneng.2017.04.029

REISINGER, A.; CLARK, H.; COWIE, A.; EMMET‐BOOTH, J.; FISCHER, C. G.; HERRERO, M.; HOWDEN, M.; LEAHY, S. C. How necessary and feasible are reductions of methane emissions from livestock to support stringent temperature goals? Philosophical Transactions of the Royal Society A, v. 379, n. 2210, e20200452, 2021. https://doi.org/10.1098/rsta.2020.0452

REVELL, L. E.; STENKE, A.; ROZANOV, E.; BALL, W. T.; LOSSOW, S.; PETER, T. The role of methane in projections of 21st century stratospheric water vapour. Atmospheric Chemistry and Physics, v. 16, n. 20, p. 13067-13080, 2016. https://doi.org/10.5194/acp-16-13067-2016

SANGAIAH, A. K.; TIRKOLAEE, E. B.; GOLI, A.; DEHNAVI-ARANI, S. Robust optimization and mixed-integer linear programming model for LNG supply chain planning problem. Soft Computing, v. 24, n. 11, p. 7885-7905, 2019. https://doi.org/10.1007/s00500-019-04010-6

SANTOS, V. A. D.; SILVA, P. P. da; SERRANO, L. The maritime sector and its problematic decarbonization: A Systematic review of the contribution of alternative fuels. Energies, v. 15, n. 10, e3571, 2022. https://doi.org/10.3390/en15103571

SERRA, P.; FANCELLO, G. Towards the IMO’s GHG goals: A critical overview of the perspectives and challenges of the main options for decarbonizing international shipping. Sustainability, v. 12, n. 8, e3220, 2020. https://doi.org/10.3390/su12083220

THORPE, A. Enteric fermentation and ruminant eructation: the role (and control?) of methane in the climate change debate. Climatic Change, v. 93, n. 3-4, p. 407-431, 2008. https://doi.org/10.1007/s10584-008-9506-x

XING, H.; SPENCE, S.; CHEN, H. A comprehensive review on countermeasures for CO2 emissions from ships. Renewable & Sustainable Energy Reviews, v. 134, e110222, 2020. https://doi.org/10.1016/j.rser.2020.110222

Downloads

Publicado

2024-09-19

Como Citar

Elmallah, M., Shouman, M., & Elgohary, M. (2024). REDUCTION OF THE METHANE EMISSIONS ON LIVESTOCK SHIPS TO MITIGATE GREENHOUSE GAS EMISSIONS AND PROMOTE FUTURE MARITIME TRANSPORT SUSTAINABILITY. Nativa, 12(3), 551–558. https://doi.org/10.31413/nat.v12i3.18180

Edição

Seção

Ciências Ambientais / Environmental Sciences