ALPHA-LACTALBUMIN ISOLATED FROM CAMEL MILK ON HYPERLIPIDEMIA AND HYPERGLYCEMIA IN EXPERIMENTAL MICE

Autores

DOI:

10.31413/nat.v11i4.16333

Palavras-chave:

camel milk, a-lactalbumin, purification, hyperglycemia, hyperlipidemia

Resumo

This study investigated the effect of α-lactalbumin which was isolated from camel milk (a-Lac) at 200 and 400 mcg/day against metabolic disorders hyperlipidemia and hyperglycemia in cholesterol-induced lipidemia for mice. Monitor vital signs such as body weight, fasting glucose in blood level was observed every week until 8 weeks (1st 4wk adaptation and abnormality 2nd, 4wk during treatment investigated period), oral glucose tolerance test (OGTT) level and biochemical parameters were measured after the second 4wk in blood and serum samples, like lipid profiles, insulin resistance, Liver enzymes including ALT, AST, and ALP. The results showed that camel α-La contributed effectively to maintaining vital indicators within healthy limits, and caused decreases in the level of hyperlipidemia and hyperglycemia. It gave activity to liver enzymes. The results were a clear statistical difference. Recommend using camel whey proteins and α-La in particular due to its abundance in camel milk and its therapeutic properties.

Keywords: camel milk; a-lactalbumin; purification; hyperglycemia; hyperlipidemia.

 

Alfa-lactalbumina isolada do leite de camelo na hiperlipidemia e hiperglicemia em camundongos experimentais

 

RESUMO: Este estudo investigou o efeito da α-lactalbumina isolada do leite de camelo (a-Lac) nas doses de 200 e 400 mcg/dia contra distúrbios metabólicos, hiperlipidemia e hiperglicemia na lipidemia induzida por colesterol, em camundongos. Foram monitorados os sinais vitais, como peso corporal, glicemia de jejum no nível sanguíneo todas as semanas, até 8 semanas (sendo a adaptação de nas 4 primeiras semanas, e, a segunda etapa de anormalidade, nas 4 semanas restantes), nível de teste oral de tolerância à glicose (OGTT). Os parâmetros bioquímicos foram medidos após as 8 semanas, em amostras de sangue e soro, quantificando os perfis lipídicos, resistência à insulina, enzimas hepáticas, incluindo ALT, AST e ALP. Os resultados mostraram que α-Lac contribuiu efetivamente para manter os indicadores vitais dentro dos limites saudáveis e causou reduções no nível de hiperlipidemia e hiperglicemia, gerando atividade às enzimas hepáticas. Os resultados apresentaram diferenças estatísticas evidentes, permitindo recomendar o uso de proteínas de soro de camelo e α-Lac, em particular, devido à sua abundância no leite de camelo e às suas propriedades terapêuticas.

Palavras-chave: leite de camelo; a-lactalbumina; purificação; hiperglicemia; hiperlipidemia.

Biografia do Autor

Zaid Ali Haddad, Center Scientific-Research, Al-ayen University, Thi-Qar, Iraq.

 

 

Referências

CHEN, H.; GUAN, K.; QI, X.; WANG, R.; MA, Y. α-Lactalbumin ameliorates hepatic lipid metabolism in high-fat-diet-induced obese C57BL/6J mice. Journal of Functional Foods, v. 75, e104253, 2020. https://doi.org/10.1016/j.jff.2020.104253

DU, D.; LV, W.; JING, X.; YU, C.; WUEN, J.; HASI, S. Camel whey protein alleviates heat stress-induced liver injury by activating the Nrf2/HO-1 signaling pathway and inhibiting HMGB1 release. Cell Stress and Chaperones, v. 27, n. 4, p. 449-460, 2022. https://doi.org/10.1007/s12192-022-01277-x

FREEDMAN, M. R.; KING, J.; KENNEDY, E. Popular diets: a scientific review. Obesity Research, v. 9, n. S3, p. 1-5, 2001. https://doi.org/10.1038/oby.2001.113

HAMID, A. I.; DOOSH, K. S. Studying of physicochemical and sensory properties of reduced fat yogurt manufactured by adding Beta-Glucan of barley. Annals of the Romanian Society for Cell Biology, v. 12, n. 4, p. 3287-301, 2021.

HUANG, B.; GOODMAN, E.; DANIELS, S. R.; MORRISON, J. A.; DOLAN, L. M. Contrasting prevalence of and demographic disparities in the World Health organization and national cholesterol education program adult treatment Panel III definitions of metabolic syndrome among adolescents. The Journal of Pediatrics, v. 145, n. 4, p. 445-451, 2004. https://doi.org/10.1016/j.jpeds.2004.04.059

KAFI, L. A. A comparative study between olive oil and Nigella Sativa oil in treatment of hyperlipidemia induced in male albino mice. The Iraqi Journal of Veterinary Medicine, v. 38, n. 2, p. 123-127, 2014. https://doi.org/10.30539/iraqijvm.v38i2.233

KHAN, M. Z.; XIAO, J.; MA, Y.; MA, J.; LIU, S.; KHAN, A.; KHAN, J. M.; CAO, Z. Research development on anti-microbial and antioxidant properties of camel milk and its role as an anti-cancer and anti-hepatitis agent. Antioxidants, v. 10, n. 5, e788, 2021. https://doi.org/10.3390/antiox10050788

KALAIVANISAILAJA, J.; MANJU, V.; NALINI, N. Lipid profile in mice fed a high-fat diet after exogenous leptin administration. Polish Journal of Pharmacology, v. 55, n. 5, p. 763-770, 2003.‏

KHOSRAVI, M.; ASL, S. T. S.; ANAMAG, A. N.; LANGAROUDI, M. S.; MOHARAMI, J.; AHMADI, S.; KASAEIYAN, R. Parenting styles, maladaptive coping styles, and disturbed eating attitudes and behaviors: a multiple mediation analysis in patients with feeding and eating disorders. PeerJ, v. 11, e14880, 2023. https://doi.org/10.7717/peerj.14880

KIM, M.; SHIN, H. K. The water-soluble extract of chicory influences serum and liver lipid concentrations, cecal short-chain fatty acid concentrations and fecal lipid excretion in rats. The Journal of Nutrition, v. 128, n. 10, p. 1731-1736, 1998. https://doi.org/10.1093/jn/128.10.1731

LIU, Y.; FAN, Y.; GAO, L.; ZHANG, Y.; YI, J. Enhanced pH and thermal stability, solubility and antioxidant activity of resveratrol by nanocomplexation with α-lactalbumin. Food & Function, v. 9, n. 9, p. 4781-4790, 2018. https://doi.org/10.1039/C8FO01172A

MOHAMED, W. A.; SCHAALAN, M. F.; ELABHAR, H. S. Camelmilk: Potential utility as an adjunctive therapy to Peg-IFN/RBVinHCV-4 infected patients in Egypt. Nutrition and Cancer, v. 67, p. 1307-1315, 2015. https://doi.org/10.1080/01635581.2015.1087041

MUHAISEN, A. H.; SADDAM, A. C. The effect of grape seed extract on lipid profile in diabetic mice. In: IOP Conference Series: Earth and Environmental Science. Proceedings… v. 1214, n. 1, e012027. IOP Publishing, 2023. https://doi.org/10.1088/1755-1315/1214/1/012027

MUSSO, G.; GAMBINO, R.; CASSADER, M. Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis. Progress in Lipid Research, v. 52, n. 1, p. 175-19, 2013. https://doi.org/10.1016/j.plipres.2012.11.002.

NEYESTANI, T. R.; DJALALI, M.; PEZESHKI, M. Isolation of alpha-lactalbumin, beta-lactoglobulin, and bovine serum albumin from cow’s milk using gel filtration and anion-exchange chromatography including evaluation of their antigenicity. Protein Expression and Purification, v. 29, n. 2, p. 202-208, 2003. https://doi.org/10.1016/S1046-5928(03)00015-9

PAL, S.; ELLIS, V.; DHALIWAL, S. Effects of whey protein isolate on body composition, lipids, insulin and glucose in overweight and obese individuals. British Journal of nutrition, v. 104, n. 5, p. 716-723, 2010. https://doi.org/10.1017/S0007114510000991

QADIR, R. R.; SHNAWA, B. H. Serum Interleukin-17 and its correlation with Anti-CCP antibodies, vitamin D3, and obesity in rheumatoid arthritis women patients. Advancements in Life Sciences, v. 9, n. 3, p. 347-355, 2022.

QU, J.; KO, C. W.; TSO, P.; BHARGAVA, A. Apolipoprotein A-IV: a multifunctional protein involved in protection against atherosclerosis and diabetes. Cells, v. 8, n. 4, e319, 2019.‏ https://doi.org/10.3390/cells8040319

RAHEEM, A.; SULTAN, R.; YASMEEN, H. Epidemiology of Obesity in Asia: Challenges and Prevention. Advancements in Life Sciences, v. 9, n. 2, p. 125-130, 2022.

SADDAM, A. C. effect of chicory cichorium intybus l. leaves extract to protect certain liver enzymes in mice against carbon tetrachloride-induced hepatotoxicity. Iraqi Journal of Agricultural Sciences, v. 52, n. 5, p. 1248-1253, 2021.

SKURK, T.; ALBERTI-HUBER, C.; HERDER, C.; HAUNER, H. Relationship between adipocyte size and adipokine expression and secretion. The Journal of Clinical Endocrinology & Metabolism, v. 92, n. 3, p. 1023-1033, 2007. https://doi.org/10.1210/jc.2006-1055

SPERLONGANO, S.; GRAGNANO, F.; NATALE, F.; D’ERASMO, L.; CESARO, A.; GOLIA, E.; CALABRÒ, P. Lomitapide in homozygous familia hypercholesterolemia: cardiology perspective from a single-center experiencia. Journal of Cardiovascular Medicine, v. 19, n. 3, p. 83-90, 2018.‏ https://doi.org/10.2459/JCM.0000000000000620

USHIDA, Y.; SHIMOKAWA, Y.; MATSUMOTO, H.; TOIDA, T.; HAYASAWA, H. Effects of bovine α-lactalbumin on gastric defense mechanisms in naïve rats. Bioscience, Biotechnology and Biochemistry, v. 67, n. 3, p. 577-583, 2003. https://doi.org/10.1271/bbb.67.577

UVERSKY, V.; REDINGTON, M. J.; BREYDO, L. A.; ALMEHDAR, H. M.; REDWAN, E. N. α-Lactalbumin: Of camels and cows. Protein and Peptide Letters, v. 23, n. 12, p. 1072-1080, 2016. https://doi.org/10.2174/0929866523666160517123738

WILLIAMS, R.; SAEEDI, P.; SALPEA, P.; KARURANGA, S.; PETERSOHN, I.; MALANDA, B.; GREGG, E. W. Mortality attributable to diabetes in 20–79 years old adults, 2019 estimates: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Research and Clinical Practice, v. 162, e108086, 2020. https://doi.org/10.1016/j.diabres.2020.108086

ZAPATA, R. C.; SINGH, A.; PEZESHKI, A.; NIBBER, T.; CHELIKANI, P. K. Whey protein components-lactalbumin and lactoferrin-improve energy balance and metabolism. Scientific Reports, v. 7, n. 1, e9917,‏ 2017. https://doi.org/10.1038/s41598-017-09781-2

Downloads

Publicado

2023-12-31

Como Citar

Haddad, Z. A., & Saed Doosh, K. (2023). ALPHA-LACTALBUMIN ISOLATED FROM CAMEL MILK ON HYPERLIPIDEMIA AND HYPERGLYCEMIA IN EXPERIMENTAL MICE. Nativa, 11(4), 565–571. https://doi.org/10.31413/nat.v11i4.16333

Edição

Seção

Bioprospecção e Biotecnologia / Bioprospecting and Biotechnology