CENÁRIOS DE MUDANÇAS CLIMÁTICAS E EFEITOS NA ENTALPIA COMO ÍNDICE BIOMETEOROLÓGICO
DOI:
10.31413/nat.v12i3.16222Palavras-chave:
Ambiência Animal, Agropecuária, Bem-estar, Zoneamento AgroclimácoResumo
O presente artigo teve como objetivo estimar valores de entalpia (kJ/kg de ar seco) utilizando os aumentos de temperatura dos cenários preconizados pelo International Painel of Climate Change (IPCC), conforme informações do Coupled Model Intercomparison Project Phase 6 (CMIP6). A temperatura global em 2081-2100 é estimada em 1°C a 1,8°C mais alta do que entre 1850 e 1900 no melhor cenário de emissões e de 3,3°C a 5,7°C mais alta no pior cenário. Os aumentos de temperatura foram feitos sobre as temperaturas médias e máximas do período. Foram utilizadas séries históricas de 5 anos do Banco de Dados Meteorológicos para Ensino e Pesquisa (BDMEP) do Instituto Nacional de Meteorologia (INMET), para os cálculos da entalpia média (hmed) e média máxima (hmmáx) mensais de 5 cidades brasileiras, destaques na produção de origem animal no Brasil (aves poedeiras, frango de corte, suínos, bovino de corte e de leite). Os resultados apontam aumento progressivo da carga térmica do ambiente ao longo dos anos, e picos de entalpia do ar fora das faixas de conforto térmico para todos os sistemas de produção, com alerta para aves poedeiras e frango de corte com situações alarmantes de estresse térmico por calor na maior parte do ano.
Palavras-chave: aquecimento global; ambiência animal; bem-estar animal; produção animal.
Climate change scenarios and effects on the enthalpy as a biometeorological index
ABSTRACT: This article aimed to estimate enthalpy values (kJ/kg dry air) using the temperature increases of the scenarios recommended by the International Panel on Climate Change (IPCC), according to information from the Coupled Model Intercomparison Project Phase 6 (CMIP6). The global temperature in 2081-2100 is estimated to be 1°C to 1.8°C higher than between 1850 and 1900 in the best emissions scenario and 3.3°C to 5.7°C higher in the worst scenario. The temperature increases were made based on the average and maximum temperatures of the period. A historical series of 5 years from the Meteorological Database for Teaching and Research (BDMEP) of the National Institute of Meteorology (INMET) was used to calculate the monthly average (hmed) and maximum average (hmmáx) enthalpy of 5 Brazilian cities, highlights in animal production in Brazil (laying hens, broilers, pigs, beef cattle and dairy cattle). The results indicate a progressive increase in the thermal load of the environment over the years and peaks of air enthalpy outside the thermal comfort ranges for all production systems, with alerts for laying hens and broilers with alarming situations of thermal stress due to heat for most of the year.
Keywords: animal ambiance; animal welfare; animal production; global warming.
Referências
ABREU, V. M. N. Os desafios da ambiência sobre os sistemas de aves no Brasil. Revista Brasileira de Zootecnia v. 40, p. 1-14, 2011.
ALMEIDA NETO, L. A.; PANDORFI, H.; ALMEIDA, G. L.; GUISELINI, C. Climatização na pré-ordenha de vacas Girolando no inverno do semiárido. Rev Bras Eng Agríc Ambient-Agriambi, v. 18, p. 1072-1078, 2014. https://doi.org/10.1590/1807-929/agriambi.v18n10p1072-1078
ALVARES, C. A.; STAPE, J. L.; SENTELHAS, P. C.; GONÇALVES, J. L. M.; SPAROVIK, G. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711-728, 2013. https://doi.org/10.1127/0941-2948/2013/0507
ASSOCIAÇÃO BRASILEIRA DE PROTEÍNA ANIMAL (ABPA). Estatística do Setor. Disponível em: <https://abpa-br.org/area-exclusiva/mercados/#:~:text=A%20Associa%C3%A7%C3%A3o%20Brasileira%20de%20Prote%C3%ADna,com%2074%2C6%20mil%20toneladas> Acesso em: 20 abr 2023.
BAÊTA, F. C.; SOUZA, C. F. Ambiência em edificações rurais: Conforto animal. 2 ed. Viçosa: Editora UFV, 2010. 269p.
BARNABÉ, J.; PANDORFI, H.; ALMEIDA, G. L.; GUISELINI, C.; JACOB, A. L. Conforto térmico e desempenho de bezerras Girolando alojadas em abrigos individuais com diferentes coberturas. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 19, n. 5, p. 481-488, 2015. https://doi.org/10.1590/1807-1929/agriambi.v19n5p481-488
CAMARGO, J. R.; SILVA, I. J. O.; NAZARENO, A. C.; VIEIRA, F.; CASTRO, A. C.; DIAS, R. A. Qualidade de pintos em função do microclima, tempo de espera e idade de matrizes. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 19, n. 11, p. 1079-1085, 2015. http://dx.doi.org/10.1590/1807-1929/agriambi.v19n11p1079-1085
CASTRO JÚNIOR, S. J.; SILVA, I. J. O. The specific enthalpy of air as an indicator of heat stress in livestock animals. International Journal of Biometeorology, v. 65, p. 149-161, 2021. https://doi.org/10.1007/s00484-020-02022-8
CHU, C. M.; JONG, T. L.; HUANG, Y. W. A study of thermal comfort control using least enthalpy estimator on HVAC system. In: 24th American control conference, p. 3665-3670, 2008.
COLLIER, R. J.; GEBREMEDHIN, K. G. Thermal biology of domestic animals. Annual Review of Animal Biosciences, v. 3, p. 513-532, 2015. https://doi.org/10.1146/annurev-animal-022114-110659
FREITAS, L. C.; CAMPOS, A. T.; JUNIOR, T. Y.; SCHIASSI, L.; ANDRADE, R. R. Air quality, sound pressure level, and thermal environment of two swine nursery styles. Revista Ciência Agronômica, v. 49, p. 211-220, 2018.
FAO_FOOD AND AGRICULTURE ORGANIZATION. World Agriculture: towards 2015/2030. An FAO perspective. Rome: FAO; 2015. Disponível em: <http://www.fao.org/3/y4252e/y4252e00.htm#TopOfPage>. Acesso em 20 abr 2022.
GOMEZ-ZAVAGLIA, A.; MEJUTO, J. C.; SIMAL-GANDARA, J. Mitigation of emerging implications of climate change on food production systems. Food Research International, v. 134, e109256, 2020. https://doi.org/10.1016/j.foodres.2020.109256
HASSAN, S.; HABASHY, W.; GHONAME, M.; ELGANNAR, A. Blood hematology and biochemical of four laying hen strains exposed to acute heat stress. International Journal of Biometeorology, v. 67, p. 675-686, 2023. https://doi.org/10.1007/s00484-023-02445-z
HOTZEL, M. J.; VANDRESEN, B. Brazilians' attitudes to meat consumption and production: Present and future challenges to the sustainability of the meat industry. Meat Science, v. 192, e108893, 2022. https://doi.org/10.1016/j.meatsci.2022.108893
INSTITUTO NACIONAL DE METEOROLOGIA (INMET). Normais Climatológicas do Brasil 1961-1990. Disponível em: <http://www.inmet.gov.br/portal/index.php?r=clima/normaisclimatologicas>. Acesso em: 04 set. 2017.
INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC). The Physical Science Basis. Disponível em:<https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WGIAR5_SPM_brochure_en.pdf>. Acesso em 12 mai 2021.
INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC). Climate Change 2023: Synthesis Report. A Report of the Intergovernmental Panel on Climate Change. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. Disponível em: < https://www.ipcc.ch/report/ar6/syr/>. Acesso em 22 mai 2023.
INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC). AR6. Summary for Policymakers. In: MASSON-DELMOTTE, V., P. ZHAI, A. PIRANI, S. L. CONNORS, C. PÉAN, S. BERGER, N. CAUD, Y. CHEN, L. GOLDFARB, M. I. GOMIS, M. HUANG, K. LEITZELL, E. LONNOY, J.B.R. MATTHEWS, T. K. MAYCOCK, T. WATERFIELD, O. YELEKÇI, R. YU AND B. ZHOU (Eds). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2021. 41p.
LACETERA, N. Impact of climate change on animal health and welfare, Animal Frontiers, v. 9, n. 1, p. 26-31, 2019. https://doi.org/10.1093/af/vfy030
MARTELLO, L. S.; SAVASTANO, H. Jr.; TITTO, E. A. L. Respostas fisiológicas e produtivas de vacas holandesas em lactação submetidas a diferentes ambientes. Revista Brasileira de Zootecnia, v. 14, p. 406-412, 2004. https://doi.org/10.1590/S1519-99402013000300016
MAYORGA, E. J.; ROSS, J. W.; KEATING, A. F.; RHOADS, R. P.; BAUMGARD, L. H. Biology of heat stress; the nexus between intestinal hyperpermeability and swine reproduction. Theriogenology, v. 154, p. 73-83, 2020. https://doi.org/10.1016/j.theriogenology.2020.05.023
MIKOVITS, C.; ZOLLITSCH, W.; HORTENHUBER, S. J.; BAUMGARTNER, J.; NIEBUHR, K.; PIRINGER, M.; ANDERS, I.; ANDRE, K.; HENNIG-PAULA, I.; SCHONHART, M.; SCHEUBERGER, G. Impacts of global warming on confined livestock systems for growing-fattening pigs: simulation of heat stress for 1981 to 2017 in Central Europe. International Journal of Biometeorology, v. 63, p. 221-230, 2019. https://doi.org/10.1007/s00484-018-01655-0
MURRAY, F.W. On the computation of saturation vapor pressure.J. Appl. Meteorology ., v. 6, p. 203-204, 1967.
NAVARINI, F. C.; KLOSOWSKI, E. S.; CAMPOS, A. T.; TEIXEIRA. R. A.; ALMEIDA, C. P. Conforto térmico de bovinos da raça nelore a pasto sob diferentes condições de sombreamento e a pleno sol. Engenharia Agrícola, Jaboticabal, v.29, n.4, p.508-517, 2009.
NAZARENO, A. C.; PANDORFI, H.; ALMEIDA, G. L.; GIONGO, P. R.; PEDROSA, E. M.; GUISELINI, C. Avaliação do conforto térmico e desempenho de frangos de corte sob regime de criação diferenciado. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 3, p. 802-808, 2009. https://doi.org/10.1590/S1415-43662009000600020
NAZARENO, A. C.; SILVA, I. J. O.; VIEIRA, F.; CAMARGO, J. R.; MEDEIROS, S. R. Caracterização do microclima dos diferentes layouts de caixas no transporte de ovos férteis. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 17, p. 327-332, 2013. https://doi.org/10.1590/S1415-43662013000300012
NUNES, M. L.; MIRANDA, K. O. D. S.; FARIA, J. M.; VIEIRA, F.; ARCARO JUNIOR, I. Physiological evaluation of heat stress in gestating sows under different housing systems in bedding and concrete floor. Engenharia Agrícola, v. 34, p. 1-7, 2014. https://doi.org/10.1590/S0100-69162014000100001
PARAMESH, V.; KUMAR, P.; SHAMIM, M.; RAVISANKAR, N.; ARUNACHALAM, V.; NATH, A. J.; MAYEKAR, T.; SINGH, R.; PRUSTY, A. K.; RAJKUMAR, R. S. Integrated farming systems as an adaptation strategy to climate change: case studies from diverse agro-climatic zones of India. Sustainability, v. 14, p. 11629, 2022. https://doi.org/10.3390/su141811629
PANDORFI, H.; SILVA, I. J. O.; PIEDADE, S. M. S. Conforto térmico para matrizes suínas em fase de gestação, alojadas em baias individuais e coletivas. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 12, p. 326-332, 2008.
PAROLINI, G. Weather, climate, and agriculture: historical contributions and perspectives from agricultural meteorology. WIREs Climate Change, v. 13, n. 3, e766, 2022. https://doi.org/10.1002/wcc.766
PRUDEN, R.; PEI, R.; STORTEBOOM, H.; CARLSON, K. H. Antibiotic resistance genes as emerging contaminants: studies in Northern Colorado. Environmental Science & Technology, v. 40, n. 23, p. 7445-7450, 2006.
QUEIROZ, M. L. V.; BARBOSA FILHO, J. A. D.; LIMA SALES, F. A.; LIMA, L. R.; DUARTE, L. M. Variabilidade espacial do ambiente em galpões de frango de corte com sistema de nebulização. Revista Ciência Agronômica, v. 48, p. 586-595, 2017. https://doi.org/10.5935/1806-6690.20170068
RIBEIRO, B. P. V. B.; YANAGI JÚNIOR, T.; OLIVEIRA, D. D.; LIMA, R. R.; ZANGERONIMO, M. G. Thermoneutral zone for laying hens based on environmental conditions, enthalpy and thermal comfort indexes. Journal of Thermal Biology, v. 93, e102678, 2020. https://doi.org/10.1016/j.jtherbio.2020.102678
RICCI, G. D.; ORSI, A. M.; DOMINGUES, P. F. Estresse calórico e suas interferências no ciclo de produção de vacas de leite: revisão. Veterinária e Zootecnia, v. 20, p. 9-18, 2013.
RODRIGUES, V. C.; SILVA, I. J. O.; VIEIRA, F. M. C.; NASCIMENTO, S. T. A correct enthalpy relationship as thermal comfort index for livestock. International Journal of Biometeorology, v. 55, p. 455-459, 2011. https://doi.org/10.1007/s00484-010-0344-y
SARNIGHAUSEN, V. C. R. Estimation of thermal comfort indexes for production animals using multiple linear regression models. Journal of Animal Behaviour and Biometeorology, v. 7, n. 2, p. 73-77, 2019. https://10.31893/2318-1265jabb.v7n2p73-77
SEJIAN, V.; SHASHANK, C. G.; SILPA, M. V.; MADHUSOONDAN, A. P.; DEVARAJ, C.; KOENIG, S. Non-Invasive Methods of Quantifying Heat Stress Response in Farm Animals with Special Reference to Dairy Cattle. Atmosphere, v. 13, e1642, 2022. https://doi.org/10.339
SEVEGNANI, K. B.; FERNANDES, D. P.; SILVA, S. H. Evaluation of thermoregulatory capacity of dairy buffaloes using infrared thermography. Engenharia Agrícola, v. 36, p. 1-12, 2016. https://doi.org/10.1590/1809-4430-Eng.Agric.v36n1p1-12/2016
SILVA, N. C.; SANTOS, R. C.; ZUCCA, R.; GEISENHOFF, L. O.; CESCA, R. C.; LOVATTO, J. Enthalpy thematic map interpolated with spline method for management of broiler chicken production. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 24, n. 7, p. 431-436, 2020. https://doi.org/10.1590/1807-1929/agriambi.v24n7p431-436
SOUZA, B. B. de, SILVA, R. C., RODRIGUES, L. R., RODRIGUES, V. P., & ARRUDA, A. de S. Análises do efeito do estresse térmico sobre produção, fisiologia e dieta de aves. Agropecuária Científica no Semiárido, v. 11, n. 2, p. 22-26, 2015. https://doi.org/10.30969/acsa.v11i2.644
THORNTON, P.; NELSON, G.; MAYBERRY, D.; HERRERO, M. Impacts of heat stress on global cattle production during the 21st century: a modelling study. Lancet Planet Health, v. 6, p. 192-e201, 2022.
VELARDE, A.; FABREGA, E.; BLANCO-PENEDO, I.; DALMAU, A. Animal welfare towards sustainability in pork meat production. Meat Science, v. 109, p. 13-17, 2015. https://doi.org/10.1016/j.meatsci.2015.05.010
WORLD POPULATION REVIEW (2023). Disponível em:< https://worldpopulationreview.com>. Acesso em 12 maio 2023.
YANG, Y.; CHEN, N.; SUN, L.; ZHANG, Y.; WU, Y.; WANG, Y.; LIAO, X.; MI, J. Short-term cold stress can reduce the abundance of antibiotic resistance genes in the cecum and feces in a pig model. Journal of Hazardous Materials, v. 416, e125868, 2021. https://doi.org/10.1016/j.jhazmat.2021.125868
YAMBA, E. I.; ARYEE, J. N. A.; QUANSAH, E.; DAVIES, P.; WEMEGAH, C. S.; OSEI, M. A. Revisiting the agro-climatic zones of Ghana: A re-classification in conformity with climate change and variability. Plos Climate, v. 2, n. 1, e0000023, 2023. https://doi.org/10.1371/journal.pclm.0000023
ZOTTI, M. L.; MIRANDA, K. O. D. S, VIEIRA, A.; DEMSK, J. B.; ROMANO, G. G. Reproductive efficiency and behavior of pregnant sows housed in cages and collective pens with or without bedding. Engenharia Agrícola, v. 39, n. 2, p. 166-175, 2019. https://doi.org/10.1590/1809-4430-Eng.Agric.v39n2p166-175/2019
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Nativa
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Direitos Autorais para artigos publicados nesta revista são do autor, com direitos de primeira publicação para a revista. Em virtude de a aparecerem nesta revista de acesso público, os artigos são de uso gratuito, com atribuições próprias, em aplicações educacionais e não-comerciais.
A artigos publicados nessa revista, podem ser reproduzidos parcialmente ou utilizados como referência por outros autores, desde que seja cita a fonte, ou seja, a Revista Nativa.
Copyright for articles published in this journal are the authors, with first publication rights granted to the journal. The journal shows open access, and articles are free to use, with proper attribution, in educational and non-commercial.
The articles published in this journal may be reproduced in part or used as a reference by other authors, provided that the source is quoted.