GENERATION OF BIOGAS AND THERMAL ENERGY AT THE BOLO DAS OLIVEIRAS AGROINDUSTRY, POMBAL, PARAÍBA, BRAZIL

Autores

DOI:

10.31413/nativa.v11i1.14583

Palavras-chave:

biodigestor, efluente, metano

Resumo

ABSTRACT: This study aimed to assess the potential for generation of thermal energy from biogas produced by a rural biodigester in the Bolo das Oliveiras Agroindustry, Pombal/PB, Brazil. The biodigester was fed every two days with 0.30 m3 of biomass (mixture of water and bovine manure), retention time of 45 days. Affluent and effluent samples were collected every 15 days for 75 days. The affluent had a higher (p < 0.05) solids contents than the effluent. The highest dissolved oxygen concentration (6.67 mg L−1) was observed in the affluent. The effluent had lower (p < 0.05) total alkalinity than the affluent at all sampling times. CH4 values were higher than CO2 values throughout the experiment. Biogas also contained trace proportions of H2S and NH3 (2/3 and 1/3 ppMV, respectively). CH4 emissions were estimated at 10.58 m3 day−1. CH4 was the major constituent of biogas, as indicated by flame combustion behavior. Generation of biogas and thermal energy at the Bolo das Oliveiras Agroindustry may be economically feasible, providing a minimum monthly savings of R$ 1,582.00.

Keywords: biodigester; effluent; methane.

 

Geração de biogás e energia térmica na agroindústria Bolo das Oliveiras,

Pombal, Paraíba, Brasil

 

RESUMO: Este estudo teve como objetivo avaliar o potencial de geração de energia térmica a partir do biogás produzido por um biodigestor rural na Agroindústria Bolo das Oliveiras, Pombal/PB, Brasil. O biodigestor foi alimentado a cada dois dias com 0,30 m3 de biomassa (mistura de água e esterco bovino), tempo de retenção hidráulica de 45 dias. Amostras de afluentes e efluentes foram coletadas a cada 15 dias durante 75 dias. O afluente apresentou teores de sólidos maiores (p < 0,05) do que o efluente. A maior concentração de oxigênio dissolvido (6,67 mg L−1) foi observada no afluente. O efluente apresentou alcalinidade total menor (p < 0,05) do que o afluente em todos os tempos de amostragem. Os valores de CH4 foram superiores aos valores de CO2 durante todo o experimento. O biogás também continha traços de H2S e NH3 (2/3 e 1/3 ppMV, respectivamente). As emissões de CH4 foram estimadas em 10,58 m3 dia−1. O CH4 foi o principal constituinte do biogás, conforme indicado pelo comportamento da combustão da chama. A geração de biogás e energia térmica na Agroindústria Bolo das Oliveiras pode ser economicamente viável, proporcionando uma economia mensal mínima de R$ 1.582,00.

Palavras-chave: biodigestor; efluente; metano.

Referências

ANDRIAMANOHIARISOAMANANA, F. J.; SAIKAWA, A.; TARUKAWA, K.; QI, G.; PAN, Z.; YAMASHIRO, T.; IWASAKI, M.; IHARA, I.; NISHIDA, T.; UMETSU, K. Anaerobic codigestion of dairy manure, meat and bone meal, and crude glycerol under mesophilic conditions: synergistic effect and kinetic studies. Energy for Sustainable Development, v. 40, p. 11-18, 2017. https://doi.org/10.1016/j.esd.2017.05.008

ARELLI, V.; BEGUM, S.; ANUPOJU, G. R.; KURUTI, K.; SHAILAJA, S. Dry anaerobic co-digestion of food waste and cattle manure: Impact of total solids, substrate ratio and thermal pre treatment on methane yield and quality of biomanure. Bioresource Technology, v. 253, p. 273-280, 2018. https://doi.org/10.1016/j.biortech.2018.01.050

BRAZIL. Ministry of Agriculture. Agricultural and Livestock Plan. Secretary of Agricultural Policy. Agricultural and Livestock Plan 2018-2019, 2019. Available at: <http://www.agricultura.gov.br/assuntos/politica-agricola/plano-agricola-e-pecuario>

CALZA, L. F.; LIMA, C. B.; NOGUEIRA, C. E. C.; SIQUEIRA, J. A. C.; SANTOS, R. F. Cost assessment of biodigester implementation and biogas-produced energy. Journal of the Brazilian Association of Agricultural Engineering, v. 35, n. 6, p. 990-997, 2015. http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v35n6p990-997/2015

CAMPOS, C. M. M.; PRADO, M. A. C.; PEREIRA, E. L. Anaerobic digestion of wastewater from coffee and chemical analysis of biogas produced using gas chromatography: quantification of methane, and potential energy gas exchanger. Bioscience Journal, v. 29, n. 3, p. 570-581, 2013.

COLATTO, L.; LANGER M. Biodigestor - solid livestock waste for energy production. Unoesc & Ciência – ACET, v. 2, n. 2, p. 119-128, 2011.

FARHAT, A.; MILADI, B.; HAMDI, M.; BOUALLAGUI, H. Fermentative hydrogen and methane co-production from anaerobic co-digestion of organic wastes at high loading rate coupling continuously and sequencing batch digesters. Environmental Science and Pollution Research, v. 25, n. 28, p. 27945-27958, 2018. https://doi.org/10.1007/s11356-018-2796-2

GARDONI, R. A. P.; AZEVEDO, M. A. Study of the biodegradation of poultry carcasses through the composting process in closed discontinuous biodigesters. Revista Engenharia Sanitária, v. 24, n. 3, p. 425-429, 2019. https://doi.org/10.1590/s1413-41522019118916

GUIMARÃES, C. S.; MAIA, D. R.; SERRA, E. G. Construction of biodigesters to optimize the production of biogas from anaerobic co-digestion of food waste and sewage. Energies, v. 11, n. 4, p. 1-10, 2018. https://doi.org/10.3390/en11040870

HASSANEEN, F. Y.; ABDALLAH, M. S.; AHMED, N.; TAHA, M. M.; ELAZIZ, S. M. M. A.; EL-MOKHTAR, M. A.; BADARY, M. S.; ALLAM, N. K. Innovative nanocomposite formulations for enhancing biogas and biofertilizers production from anaerobic digestion of organic waste. Bioresource Technology, v. 309, e123350, 2020. https://doi.org/10.1016/j.biortech.2020.123350

IBGE. Instituto Brasileiro de Geografia e Estatística. Population, 2019. Available at:<https://cidades.ibge.gov.br/brasil/pb/pombal/panorama>.

JANKE, L.; WEINRICH, S.; LEITE, A. F.; STRAUBER, H.; RADETSKI, C. M.; NIKOLAUSZ, M.; NELLES, M.; STINNER, W. Year-round biogas production in sugarcane biorefineries: Process stability, optimization and performance of a two-stage reactor system. Energy Conversion and Management, v. 168, p. 188-199, 2018. https://doi.org/10.1016/j.enconman.2018.04.101

KUNZ, A.; SULZBACH, A. Portable Biogas Kit: For analyzing the concentration of methane gas, carbon dioxide, ammonia and hydrogen sulphide in biogas. KUNZ, A. [et al.]. Brazil. Patent 012070001117. 09 Oct. 2007. Available at: <https://gru.inpi.gov.br/pePI/jsp/patentes/PatenteSearchBasico.jsp>

LEITE, W.; MAFFAZZIOLI, E.; GUIMARÃES, L.; MAGO, A. D.; BELLI FILHO, P. Comparison of organic loading rate and hydraulic retention time effects on the mesophilic anaerobic digestion of thickened waste activated sludge. Engenharia Sanitária e Ambiental, v. 20, n. 4, p. 581-588, 2015. http://dx.doi.org/10.1590/S1413-41522015020040105625

MARIO, J. S.; COELHO, M. A. A.; SCHAEFFER, L.; ROSSINI, E. G. Preliminary study for compression of biogas in cylinders for domestic consumption. Revista Espacios, v. 36, n. 6, p. 1-11, 2015.

MCVOITTE, W. P. A.; CLARK, O. G. The effects of temperature and duration of thermal pretreatment on the solid-state anaerobic digestion of dairy cow manure. Heliyon, v. 5, e02140, 2019. https://doi.org/10.1016/j.heliyon.2019.e02140

MONLAU, F.; SAMBUSITI, C.; FICARA, E.; ABOULKAS, A.; BARAKAT, A.; CARRERE, H. New opportunities for agricultural digestate valorization: current situation and perspectives. Energy & Environmental Science, v. 9, p. 2600-2621, 2015. https://doi.org/10.1039/C5EE01633A

ORRICO, A. C. A.; LOPES, W. R. T.; MANARELLI, D. M.; ORRICO JUNIOR, M. A. P.; SUNADA, N. S. Anaerobic co-digestion of dairy cattle manure and waste oil. Journal of the Brazilian Association of Agricultural Engineering, v. 36, n. 3, p. 537-545, 2016.

PANYAPING, K.; MOONTEE, P. Potential of biogas production from mixed leaf and food waste in anaerobic reactors. Journal of Material Cycles and Waste Management, v. 20, p. 723-737, 2017. http://dx.doi.org/10.1007/s10163-017-0629-x

PIÑAS, J. A. V.; VENTURINI, O. J.; LORA, E. E. S.; ROALCABA, O. D. C. Technical assessment of mono-digestion and co-digestion systems for the production of biogas from anaerobic digestion in Brazil. Renewable Energy, v. 117, p. 447-458, 2018. https://doi.org/10.1016/j.renene.2017.10.085

BAIRD, R.; EATON, A.; RICE, E.; BRIDGERWATER, L. Standard methods for the examination of water and wastewater. 24 ed. New York: American Public Health Association, 2023. 1624p.

RIOS, M.; KALTSCHMITT, M. Electricity generation potential from biogas produced from organic waste in Mexico. Renewable and Sustainable Energy Reviews, v. 54, p. 384-395, 2016. https://doi.org/10.1016/j.rser.2015.10.033

ROSLI, N. S.; IDRUS, S.; DAUD, N.; AHSAN, A. Assessment of potential biogas production from rice straw leachate in upflow anaerobic sludge blanket reactor. International Journal of Smart Grid and Clean Energy, v. 5, n. 3, p. 135-143, 2016. http://dx.doi.org/10.12720/sgce.5.3.135-143

RIBEIRO FILHO, J. C.; PALÁCIO, H. A. Q.; ANDRADE, E. M.; SANTOS, J. C. N.; BRASIL, J. B. Rainfall characterization and sedimentological responses of watersheds with different land uses to precipitation in the semiarid region of Brazil. Revista Caatinga, v. 30, n. 2, p. 468-478, 2017. https://doi.org/10.1590/1983-21252017v30n222rc

SAADY, N. M. C.; MASSÉ, D. I. High rate psychrophilic anaerobic digestion of high solids (35%) dairy manure in sequence batch reactor. Bioresource Technology, v. 186, p. 74-80, 2015. https://doi.org/10.1016/j.biortech.2015.03.038

SANTOS, I. F. S.; VIEIRA, N. D. B.; NÓBREGA, L. G. B.; BARROS, R. M.; TIAGO FILHO, G. L. Assessment of potential biogas production from multiple organic wastes in Brazil: Impact on energy generation, use, and emissions abatement. Resources, Conservation and Recycling, v. 131, p. 54-63, 2018. https://doi.org/10.1016/j.resconrec.2017.12.012

SGANZERLA, E. Biodigestor: a solution. Porto Alegre: Agriculture, 1983. 88p.

SILVA, F. A. Z.; AZEVEDO, C. A.V. The assistat software version 7.7 and its use in the analysis of experimental data. African Journal of Agricultural Research, v. 11, n. 39, p. 3733-3740, 2016. https://doi.org/10.5897/AJAR2016.11522

SIMM, S.; ORRICO, A. C. A.; ORRICO JUNIOR, M. A. P.; SUNADA, N. S.; SCHWINGEL, A. W.; COSTA, M. S. S. M. Crude glycerin in anaerobic co-digestion of dairy cattle manure increases methane production. Scientia Agricola, v. 74, n. 3, p. 175-179, 2016. https://doi.org/10.1590/1678-992x-2016-0057

XIAO, B.; ZHANG, W.; WU, J.; QIANG, H.; LIU, J.; LI, Y. Temperature-phased anaerobic digestion of food waste: A comparison with single-stage digestions based on performance and energy balance. Bioresource Technology, v. 249, p. 826-834, 2018. http://dx.doi.org/10.1016/j.biortech.2017.10.084

Downloads

Publicado

2023-04-13

Como Citar

Souza Neto, J. J. de, Fonsêca Feitosa, B., Candeia, R. A., Cavalcanti, M. T., & Lima, A. S. (2023). GENERATION OF BIOGAS AND THERMAL ENERGY AT THE BOLO DAS OLIVEIRAS AGROINDUSTRY, POMBAL, PARAÍBA, BRAZIL. Nativa, 11(1), 108–114. https://doi.org/10.31413/nativa.v11i1.14583

Edição

Seção

Desenvolvimento Rural / Rural development