EFFECT OF SALICYLIC ACID ON SOME OF MORPHOLOGICAL AND PHYSIOLOGICAL TRAITS OF WHEAT (Triticum aestivum L.) UNDER DIFFERENT LEVELS OF CADMIUM STRESS

Autores

  • Azita Behnam bistonazizi@gmail.com
  • Hossein Abbaspour bistonazizi@gmail.com
  • Akbar Safipour Afshar bistonazizi@gmail.com
  • Fatemeh Saeed Nematpour bistonazizi@gmail.com

DOI:

10.31413/nativa.v6i6.7039

Resumo

EFEITO DE NANO-QUELADO DE NITROGÊNIO E UREIA FERTILIZANTE EM PLANTAS DE TRIGO SOB CONDIÇÕES DE ESTRESSE HÍDRICO

 

Atualmente, o ácido salicílico é usado como um regulador de crescimento para reduzir os efeitos negativos de diferentes níveis de estresse. Esta pesquisa foi conduzida como experimento fatorial em um delineamento de blocos inteiramente casualizados. Plantas de trigo foram plantadas em quatro níveis de cádmio (0, 100, 200 e 300 μmol) em três níveis de ácido salicílico (0, 0,5 e 1,0 mmol) em três repetições. Os resultados mostraram que a altura das raízes, o peso fresco e seco do caule diminuíram significativamente e as enzimas prolina e catalase e superóxido dismutase foram aumentadas devido ao estresse com cádmio. A aplicação foliar de ácido salicílico em condições de não estresse teve um efeito significativo sobre as características e também resultou em seu aumento. A aplicação de duas concentrações de 0,5 e 1,0 mmol de ácido salicílico em condições de estresse resultou na redução dos efeitos do estresse e, consequentemente, na redução das enzimas prolina e catalase e superóxido dismutase e o crescimento foi melhorado. A quantidade de 1,0 mmol de ácido salicílico foi mais efetiva e pode-se concluir que o ácido salicílico tem um efeito moderador e decrescente nos efeitos negativos da toxicidade do cádmio em plantas de trigo.

Palavras-chave: trigo (Triricum aestivum L.), ácido salicílico, cádmio.

 

ABSTRACT:

Nowadays, Salicylic acid is used as a growth regulator to reduce the negative effects of different levels of stress. This research was conducted as factorial experiment on a completely randomized block design. Wheat plants were planted in four levels of cadmium (0, 100, 200 and 300 μmol) with three levels of salicylic acid (0, 0.5 and 1 mmol) in three replications. The results showed that root heights, fresh and dry weight of the stem were decreased significantly and leaf proline and catalase and superoxide dismutase enzymes were increased due to cadmium stress. Foliar application of salicylic acid in non-stress conditions had a significant effect on the traits and resulted in their increase, as well. Application of two concentrations of 0.5 and 1 mmol salicylic acid in stress conditions resulted in reduction of the effects of stress and consequently, reduction of proline and catalase and superoxide dismutase enzymes and growth was improved. The amount of 1mmol of salicylic acid was more effective and it can be concluded that salicylic acid has a moderating and decreasing effect on the negative effects of cadmium toxicity in wheat plant.

Keywords: wheat (Triricum aestivum L.), salicylic acid, cadmium.

Referências

ABDOLAHI, M.; SHEKARI, F. Effect of priming by salicylic acid on vigor and performance of wheat seedlings at different planting dates. Cereal Research, v. 3, n. 1, p. 17-32, 2013.

AEBI, H.; LESTER, P. Catalase in vitro. Meth Enzymol, p. 121-126, 1984.

AGAMI, R. A.; MOHAMED, G. F. Exogenoustreatmentwithindole-3-aceticacid and salicylic acid alleviates cadmium toxicity in wheat seedlings. Ecotoxicology and Environmental Safety, New York, v. 94, p. 164–171, 2013. DOI: https://doi.org/10.1016/j.ecoenv.2013.04.013

AHMADVAND, S.; BAHMANI, R.; HABIBI, D.; FOROOZESH, P. Study on the effect of cadmium chloride on growth parameters and some physiological traits in bean seedlings. Journal of Agronomy and Plant Breeding, Karaj, v. 8, n. 4, p. 167-182, 2013.

AKBARI, M.; BARADARAN FIROUZABADI, M.; ASGHARI, H.; FARROKHI, N.; GHORBANI, H. Complimentary response of salicyclic acid and cadmium on growth and yield traits of soybean. International Journal of Agronomy and Plant Production, vol. 4, n. 7, p. 1684-1696, 2013.

AKHAVAN, H. T.; DILMAGHANI K. A. Effects of salicylic acid on some of biochemical constituents on pepper (Capsicum annum L.) under cadmium stress. International Journal of Agronomy and Plant Production, vol. 4, n. 12, p. 3276-3283, 2013

AZEVEDO, R. A.; GRATAO, P. L.; MONTEIRO, C. C.; CARVALHO, R. F. What is new in the research on cadmium-induced stress in plants?. Food and Energy Security, v. 1, n. 2, p. 133-140, 2012. DOI: https://doi.org/10.1002/fes3.10

BARANDEH, F.; KAVOSI, H. R. Cadmium effect on changes of some components of enzyme and non-enzymatic antioxidant defense system in lentil seedlings. Journal of Cereals Research in Iran, Mexed, v. 7, n. 2, p 125-137. DOI: http://dx.doi.org/10.22067/ijpr.v7i2.45542

BATES, L.; WALDREN, R. P.; TEARE, I. D. Rapid determination of free proline for water-stress studies. Plant and Soil, v. 39, p. 205-207, 1973.

BELKHADI, A.; HEDIJI, H.; ABBES, Z.; NOUAIRI, I.; BARHOUMI, Z.; ZARROUK, M.; CHABI, W.; DJEBALI W. Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L. Ecotoxicology and Environmental Safety, New York, v. 73, n. 5, p. 1004–1011, 2010. DOI: https://doi.org/10.1016/j.ecoenv.2010.03.009

BEYER, W. F.; FRIDOVICH, I. Assaying for Superoxide Dismutase Activity: Some Large Consequence of Minor Change in Conditions. Analytical Biochemistry, v. 161, p. 559-566, 1987.

http://dx.doi.org/10.1016/0003-2697(87)90489-1

BIDESHKI, A.; ARVIN, M. J. Effect of salicylic acid (SA) and drought stress on growth, bulb yield and allicin content of garlic (Allium sativum) in field. Plant Ecophysiology, v. 2, p. 73-79, 2010.

CHEN, J.; CHENG, Z.; ZHONG, S. Effect of exogenous salicylic acid on growth and H2O2- Metabolizing enzymes in rice seedlings lead stress. Journal of Environmental sciences, Los Angeles, v. 19, n. 1, p. 44-49, 2007. DOI: https://doi.org/10.1016/S1001-0742(07)60003-5

CHEN, W.; HOU, Z.; WU, L.; LIANG, Y.; WEI, C. Effect of salicylic acid and nitrogen on cotton growth in arid environment. Plant and Soil, The Hague, v. 326, n. 1-2, p. 61-73, 2010. DOI: https://doi.org/10.1007/s11104-009-0022-1

DOLATABADIAN, A. MODARRES-SANAVY, S. AHMADIAN-CHASHMI, N. The effects of foliar application of ascorbic acid (vitamin C) on antioxidant enzymes activities, lipid peroxidation and proline accumulation of canola (Brassica napus L.) under conditions of salt stress. J Agron Crop Sci. 2008;194:206-213. Doi: http://dx.doi.org/10.1111/j.1439-037X.2008.00301.x

DOLATABADIAN, A.; MODARRES SANAVY, S. A. M.; SHARIFI, M. Effect of salicylic acid and salt on wheat seed germination. Acta Agriculturae Scandinavica Section B - Soil and Plant Science, Copenhagen, v. 59, n. 5, p. 456-464, 2009. DOI: https://doi.org/10.1080/09064710802342350

DRAZIC, G.; MIHAILOVIC N.; LOJIC M. Cadmium accumulation in Medicago sativa seedlings treated with salicylic acid. Plant Biology, Praha, v. 50, n. 2, p. 239-244, 2006. DOI: https://doi.org/10.1007/s10535-006-0013-5

GABALLAH, M. S.; RADY, M. M. Salicylic Acid Mitigated Cadmium Toxicity by Attenuating the Oxidative Stress in Pea (Pisum sativum L.) plants. International Journal of Biological, Ecological and Environmental Sciences, v. 1, n. 4, p. 159-165, 2012.

GOUIA, H.; GHORBAL, M. H.; MEYER, C. Effect of cadmium on activity of nitrate reductase and on other enzymes of nitrate assimilation pathway in bean. Plant Physiology and Biochemistry, Paris, v. 38, n. 7-8, p. 629-638, 2001. DOI: https://doi.org/10.1016/S0981-9428(00)00775- 0

GUBRELAY, U.; AGNIHOTRI, R. K.; SINGH, G.; KAUR, R.; SHARMA, R. Effect of heavy metal Cd on some physiological and biochemical parameters of Barley (Hordeum vulgare L.). International Journal of Agriculture and Crop Sciences, v. 5, n. 22, p. 2743-2751, 2013.

HEGEDUS, A.; ERDEI, S.; HORVATH, G. Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sciences, Limerick, v. 160, n. 6, p. 1085-1093, 2001. DOI: https://doi.org/10.1016/S0168-9452(01)00330-2

LARBI, A.; MORALES, F.; ABADÍA, A.; GOGORCENA, Y.; LUCENA, J. J.; ABADÍA, J. Effects of Cd and Pb in sugar beet plants grown in nutrient solution: induced Fe deficiency and growth inhibition. Functional Plant Biology, v. 29, n. 12, p. 1453-1464, 2002. DOI: https://doi.org/10.1071/FP02090

LESKO, K.: SIMON-SARKADI, L. Effect of cadmium stress on amino acid and polyamine content of wheat seedlings. periodica polytechnica ser. chem. eng. vol. 46, no. 1–2, pp. 65–71, 2003.

LLAMAS, A; ULLRICH, C. I.; SANS, A. Cd2+ effects on transmembrane electrical potential difference, respiration and membrane permeability of rice (Oryza sativa L.) roots. Plant and Soil, The Hague, v. 219, n. 1-2, p. 21-28, 2000. DOI: https://doi.org/10.1023/A:1004753521646

LOPEZ-MILLAN, A. F.; SAGARDOY, R.; SOLANAS, M.; ABADIA A.; ABADIA, J. Cadmium toxicity in tomato (Lycopersicon esculentum) plant grown hydroponics. Enviromental and Expermental Botany, Elmsford, v. 65, n. 2-3, p. 376-385, 2009. DOI: https://doi.org/10.1016/j.envexpbot.2008.11.010

MAGHSOUDIA, K.; ARVIN, M. J. Salicylic acid and osmotic stress effects on seed germination and seedling growth of wheat (Triticum aestivum L.) cultivars. Plant Ecophysiology, v. 2, p. 7-11, 2010.

MOHSENZADEH, S.; SHAHRTASH, M.; MOHABATKAR, H. Interactive effects of salicylic acid and silicon on some physiological responses of cadmium-stressed maize seedlings. Iranian Journal of Science & Technology, New York, v. 35, n. 1, p. 57-60, 2011. DOI: http://dx.doi.org/10.22099/ijsts.2011.2129

MOUSSA, H. R.; EL-GAMAL, S. M. Effect of salicylic acid pretreatment on cadmium toxicity in wheat. Biologia Plantarum, Praha, v. 54, n. 2, p. 315-320, 2010. DOI: https://doi.org/10.1007/s10535-010-0054-7

OLOUMI, H.; MANOOCHEHRI KALANTARI, K. H. Study the effects of cadmium chloride on growth parameters, chlorophyll, carotenoids, proteins and sugar content in canola (Brassica napus) plants. Pajouhesh-Va-Sazandegi, Tehran v. 16, n. 2, p. 74-80, 2003.

PANDA, S. K.; PATRA H. K. Effect of salicylic acid potentiates cadmium-induced oxidative damage in Oryza sativa L. leaves. Acta Physiologiae Plantarum, Krakow, v. 29, n. 6, p. 567–575, 2007. DOI: https://doi.org/10.1007/s11738-007-0069-7

POPOVA, L.; MASLENKOVAL, L.; YORDANOVA, R.; KRANTEV, A.; SZALAI, G.; JANDA T. Salicylic acid protects photosynthesis against cadmium toxicity in pea plants. General and Applied Plant Physiology, v. 34, n. 3-4, p. 133-148, 2008.

RAHNAMA, S. H.; TORABI, S.; OMIDI, M. Effect of heavy cadmium element on morphological characteristics, dry and wet weight, 1000-seed weight in two Azargol cultivars and CMS 19 sunflower. The First National Conference on New Achievements in Biological and Agricultural Sciences, 2015. 14 p. https://www.civilica.com/Paper-NFBAS01 NFBAS01_014.html

SAREMI-RAD, B.; ESFANDIARI, A. A.; SHEKARPOUR, M.; SOFALIAN, A.; AVANS, A.; MOUSAVI, S. B. Cadmium effects on some morphological and physiological parameters in wheat at seedling stage. Journal of plant research (Iranian Journal of Biology), v. 27, n. 1, p. 1-11.

SHAH, F.¬ S., WATSON, C. E.; CABERA, E. R. Seed vigor testing of subtropical Corn hybrids. Research Report, v. 3, n. 2, p. 56-68, 2002

SZALAI, G.; PAL M.; HORVATH, E.; JANDA, T.; PALDI, E. Investigations on the adaptability of maize lines and hybrids to low temperature and cadmium. Acta Agronomica Hungarica, Budapest, v. 53, n. 2, p. 183-196, 2005. DOI: https://doi.org/10.1556/AAgr.53.2005.2.7

TASGIN, E.; ATICI, O.; NALBANTOGLU, B. Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Growth Regulation, New York, v. 41, n. 3, p. 231-236, 2006. DOI: https://doi.org/10.1023/B:GROW.0000007504.41476.c2

TEWARI, R. K.; KUMAR, P.; SHARMA, P. N. Morphology and physiology of zinc-stressed mulberry plants. Journal of Plant Nutrition and Soil Science, Weinheim, v. 171, n. 2, p. 286-294, 2008. DOI: https://doi.org/10.1002/jpln.200700222

WANG, L.; ZHOU, Q.; DING, L.; SUN, Y. Effect of cadmium toxicity on nitrogen metabolismin leaves of Solanum Nigarum L. as a newly found cadmium hyperaccumulator. Journal of hazardous materials, Amsterdam, v. 154, n. 1-3, p. 818-425, 2008. DOI: https://doi.org/10.1016/j.jhazmat.2007.10.097

XU, J.; YIN, H.; LIU, X.; LI, X. Salt effects plant Cd-stress responses by modulating growth and Cd accumulation. Planta, Berlin, v. 231, n. 2, p. 449-459, 2010. DOI: https://doi.org/10.1007/s00425-009-1070-8

YADAV, K.; SINGH, N. B. Effects of benzoic acid and cadmium toxicity on wheat seedlings. Chilean Journal of Agricultural Research, Chillán, v. 73, n. 2, p. 168-174, 2013. DOI: http://dx.doi.org/10.4067/S0718-58392013000200013

ZAWOZNIK, M. D.; TOMARO, M. L.; BENAVIDES, M. P. Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana. Plant Science, v. 173, n. 2, p. 190-197, 2007. DOI: https://doi.org/10.1016/j.plantsci.2007.05.004

ZHANG, X.; FAN, X.; LI, C.; NAN, Z. Effects of cadmium stress on seed germination, seedling growth and antioxidative enzymes in Achnatherum inebrians plants infected with a Neotyphodium endophyte. Plant Growth Regulation, New York, v. 60, n. 2, p. 91-97, 2010. DOI: https://doi.org/10.1016/j.jhazmat.2009.02.002

Downloads

Publicado

2018-11-05

Como Citar

Behnam, A., Abbaspour, H., Afshar, A. S., & Nematpour, F. S. (2018). EFFECT OF SALICYLIC ACID ON SOME OF MORPHOLOGICAL AND PHYSIOLOGICAL TRAITS OF WHEAT (Triticum aestivum L.) UNDER DIFFERENT LEVELS OF CADMIUM STRESS. Nativa, 6(6), 594–599. https://doi.org/10.31413/nativa.v6i6.7039

Edição

Seção

Agronomia / Agronomy