ANÁLISE DAS COMPONENTES PRINCIPAIS NO PROCESSO DE MONITORAMENTO AMBIENTAL

Autores

DOI:

10.31413/nativa.v6i6.6453

Resumo

O presente trabalho apresenta os resultados da medição das concentrações de ozônio, óxidos de nitrogênio (NO, NO2 e NOx) e SO2 em ar ambiente em paralelo com o registro dos parâmetros meteorológicos: temperatura, radiação solar, umidade relativa, pressão barométrica, velocidade e direção do vento durante o ano de 2015. As medições foram efetuadas na estação de medição situada dentro do campus da Universidade Federal de Mato Grosso do Sul. Os resultados são apresentados neste trabalho como valores médios em relação ao tempo do dia. Diversas correlações da concentração de ozônio vs. observação atmosféricos foram feitas, juntamente com a Análise de Componentes Principais. A análise estatística dos dados obtidos, com base na Análise de Componentes Principais (ACP), levou a que 73,2% da variância dos valores medidos pudessem ser descritos com quatro fatores. Foi determinado um alto grau de intercorrelação de NOx. Estes poluentes foram todos agrupados no fator 1 e 2, que descreveu 54,6% de variâncias dos valores medidos.

Palavras-chave: poluentes, ozônio, óxidos de nitrogênio.

 

PRINCIPAL COMPONENT ANALYSIS IN THE ENVIRONMENTAL MONITORING PROCESS

 

ABSTRACT:

The present work presents the results of measuring the concentrations of ozone, nitrogen oxides (NO, NO2 and NOx) and SO2 in ambient air in parallel with the recording of meteorological parameters: temperature, solar radiation, relative humidity, barometric pressure, velocity and Wind direction during the year 2015. The measurements were taken at the measuring station located inside the campus of the Federal University of Mato Grosso do Sul. The results are presented in this work as mean values in relation to the time of day. Several correlations of the ozone concentration vs. Atmospheric observations were made along with Principal Component Analysis. Statistical analysis of the data obtained, based on Principal Component Analysis (PCA), led to 73.2% of the variance of the measured values could be described with four factors. A high degree of NOx intercorrelation was determined. These pollutants were all grouped in factor 1 and 2, which described 54.6% of variances of the measured values.

Keywords: pollutants, ozone, nitrogen oxides.

Biografia do Autor

Amaury de Souza, Universidade Federal de Mato Grosso do Sul

Graduado em Fisica (UFSCAR/USP-Sao Carlos), mestrado em meteorologia (UFV), doutorado em tecnologias ambientais (UFMS) e professor associado na UFMS

Débora Aparecida da Silva Santos, Universidade Federal de Mato Grosso, Campus Universitário de Rondonópolis

Enfermeira, Doutora em Recursos Naturais pela Universidade Federal de Campina Grande (UFCG). Professora, Adjunto II, Curso de Enfermagem, Universidade Federal de Mato Grosso (UFMT), Campus Universitário de Rondonópolis (CUR), Área de Saúde Coletiva. Pesquisadora nas áreas de saúde coletiva, estudos epidemiológicos e saúde ambiental.

Referências

ABDUL-WAHAB, S. A.; AL-ALAWI, S. M. Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks. Environmental Modelling & Software, Oxford, v. 17, n. 3, p. 219-228, 2002. DOI: https://doi.org/10.1016/S1364-8152(01)00077-9

AGUDELO-CASTAÑEDA, D. M.; TEIXEIRA, E. C.; ROLIM, S. B. A.; PEREIRA, F. N.; WIEGAND, F. Measurement of particle number and related pollutant concentrations in an urban area in South Brazil. Atmospheric Environment, Oxford, v. 70, p. 254-262, 2013. DOI: https://doi.org/10.1016/j.atmosenv.2013.01.029

CASTELL, N.; MANTILLA, E.; SALVADOR, R.; STEIN, A. F.; MILLAN, M. Photochemical model evaluation of the surface ozone of a power plant in a heavily industrialized area of southwestern Spain. Journal of Environmental Management, London, v. 91, n. 3, p. 662-676, 2010. DOI: https://doi.org/10.1016/j.jenvman.2009.09.030

DJORDJEVIĆ, P., MIHAJLOVIĆ, I., ŽIVKOVIĆ, Ž. Comparison of linear and nonlinear statistics methods applied in industrial process modeling procedure. Serbian Journal of Management, v. 5, n. 2, p. 189-198, 2010.

DJURIC, I.; DJORDJEVIC, P.; MIHAJLOVIC, I.; NIKOLIC, D. J.; ZIVKOVIC, Z. Prediction of Al2O3 leaching recovery in the Bayer process using statistical multilinear regression analysis. Journal of Mining and Metallurgy, Section B: Metallurgy, Bor, v. 46, n. 2, p. 161-169, 2010. DOI: https://doi.org/10.2298/JMMB1002161D

DUAN, J.; TAN, J.; YANG, L.; WU, S.; HAO, J. Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmospheric Research, Amsterdam, v. 88, v. 1, p. 25-35, 2008. DOI: https://doi.org/10.1016/j.atmosres.2007.09.004

EEA_Europe's environment: The third assessment. Environmental Assessment Report. n. 10. Copenhagen: European Environmental Agency, 2003.

EPA_Environmental Protection Agency. Provisional assessment of recent studies on health and ecological effects on ozone exposure. EPA/600/R-09/101. Washington: U.S. Environmental Protection Agency, 2009.

GONZALES, L.; BERMEJO, R.; ASUNCON-PARRA, M.; ELUSTONDO, D.; GARRIGO, J.; SANTAMARIA J. M. Rural O3 levels in the Middle Ebro Basin during plant growing season. Water Air & Soil Pollution, Dordrecht, v. 206, n. 1-4, p. 23-34, 2010. DOI: https://dx.doi.org/10.1007/s11270-009-0082-0

HAN, B. W.; HUNG, J. H.; WENG, Z.; ZAMORE, P. D.; AMERES, S. L. The 3'-to-5' Exoribonuclease Nibbler Shapes the 3' Ends of MicroRNAs Bound to Drosophila Argonaute1. Current Biology, London, v. 21, n. 22, p. 1878-1887, 2011. DOI: https://doi.org/10.1016/j.cub.2011.09.034

JACOB, D. J.; WINNER, D. A. Effect of Climate Change on Air Quality. Atmospheric Environment, Oxford, v. 43, n. 1, p. 51-63, 2009. DOI: https://doi.org/10.1016/j.atmosenv.2008.09.051

JOHNSON, R. A.; WICHERN, D. W. Applied Multivariate Statistical Analysis. 5. ed. Prentice Hall: Upper Saddle River, 2002. 767 p.

JONES, R. E.; HOOG, J. C. M.; KIRSTEIN, L. A.; KASEMANN, S. A.; HINTON, R.; ELLIOTT, T.; LITVAK, V. D. Temporal variations in the influence of the subducting slab on Central Andean arc magmas: evidence from boron isotope systematics. Earth and Planetary Science Letters, Amsterdam, v. 408, p. 390-401, 2014. DOI: https://doi.org/10.1016/j.epsl.2014.10.004

KLAUS, D.; POTH, A.; VOSS, M. Ozone distributions in Mexico City using principal component analysis and its relation to meteorological parameters. Atmosphere, Mexico, v. 14, n. 4, p. 171- 188, 2001.

LENGYEL, A.; HEBERGER, K.; PAKSY, L.; BANHIDI, O.; RAJKO, R. Prediction of ozone concentration in ambient air using multivariate methods. Chemosphere, Oxford, v. 57, n. 8, p. 889-896, 2004. DOI: https://doi.org/10.1016/j.chemosphere.2004.07.043

MIHAJLOVIĆ, I.; NIKOLIĆ, D. J.; ŠTRBAC, N.; ŽIVKOVIĆ, Ž. Statistical modeling in ecological management using the artificial neural networks (ANNs). Serbian Journal of Management, v. 5, n. 1, p. 39-50, 2010.

MINGOTI, S. A. Análise de dados através de Métodos de Estatística Multivariados. 1. ed. Minas Gerais: UFMG; 2005. 295 p.

MAVROIDIS, I.; ILIA, M. Trends of NOx, NO2 and O3 concentrations at three different types of air quality monitoring stations in Athens, Greece. Atmospheric Environment, Oxford, v. 63, p. 135-147, 2012. DOI: https://doi.org/10.1016/j.atmosenv.2012.09.030

NISHANTH, T.; PRASEED, K. M.; KUMAR, M. K. S.; VALSARAJ, K. T. Analysis of Ground level O3 and NOx Measured at Kannur, India. Journal of Earth Science & Climatic Change, v. 3, n. 1, p. 111, 2012. DOI: https://dx.doi.org/10.4172/2157-7617.1000111

ODMAN TALAT, M.; HU, Y.; RUSSELL, G. A.; HANEDAR, A.; BAYLAM, J. W.; BREVVER, P. F. Quantifying the sources of ozone, fine particulate matter, and regional haze in the Southeastern United States. Journal of Environmental Management, London, v. 90, n. 10, p. 3155-3168, 2009. DOI: https://doi.org/10.1016/j.jenvman.2009.05.028

PARNEL, J. Reassessing the "think global act local" mandate: evaluation and synthesis. Serbian Journal of Management, v. l, n. 1, p. 21-28, 2006.

POUPKOU, A.; MELAS, D.; ZIOMAS, I.; SYMEONIDIS, P.; LISARIDIS, I.; GERASOPOULOS, E.; ZEREFOS, C. Simulated summertime regional ground-level ozone concentrations over Greece. Water Air and Soil Pollution, Dordrecht, v. 196, n. 1-4, p. 169-181, 2009. DOI: https://doi.org/10.1007/s11270-008-9766-0

PUDASAINEE, D.; SAPKOTA, B.; SHRESTHA, M. L.; KAGA, A.; KONDO, A.; INOUE, Y. Ground Level O3 Concentrations and Its Association with NOx and Meteorological Parameters in Kathmandu Valley, Nepal. Atmospheric Environment, Oxford, v. 40, n. 40, p. 8081-8087, 2006. DOI: https://doi.org/10.1016/j.atmosenv.2006.07.011

REDDY, K. K.; NAJA, M.; OJHA, N.; MAHESH, P.; LAL, S. Influences of the Boundary Layer Evolution on Surface Ozone Variations at a Tropical Rural Site in India. Journal of earth system science, Bangalore, v. 121, n. 4, p. 911-922, 2012. DOI: https://doi.org/10.1007/s12040-012-0200-z

SHAO, M.; ZHANG, Y.; ZENG, L.; TANG, X.; ZHANG, J.; ZHONG, L.; WANG, B. Ground- level ozone in the Pearl River Delta and the roles of VOC and NOx in its production. Journal of Environmental Management, London, v. 90, n. 1, p. 512-518, 2009. DOI: https://doi.org/10.1016/j.jenvman.2007.12.008

SOUZA, A.; SCHUJMANN, E.; FACHEL, J. M. G. ; FERNANDES, W. A. Indicadores Ambientais E Doenças Respiratórias Em Crianças. Mercator, Fortaleza, v. 12, n. 27, p. 101-109, 2013. DOI: http://dx.doi.org/10.4215/RM2013.1227.0008

SOUZA, A.; ARISTONE, F.; KUMAR, U.; KOVAC-ANDRIC, E.; ARSI', M.; IKEFUTI, P. Analysis of the correlations between NO, NO2 and O3 concentrations in Campo Grande - MS, Brazil. European Chemical Bulletin, Budapest, v. 6, n. 7, p. 284-291, 2017. DOI: http://dx.doi.org/10.17628/ecb.2017.6.284-291

SOUZA, A.; OLAOFE, Z.; KODICHERLA, S. P. K.; IKEFUTI, P.; NOBREGA, L.; SABBAH, I. Probability Distributions Assessment For Modeling Gas Concentration In Campo Grande, Ms, Brazil. European Chemical Bulletin, Budapest, v. 6, n. 12, p. 569-578, 2018. DOI: http://dx.doi.org/10.17628/ecb.2017.6.569-578

TRANIER, M.; PARRISH, D. D.; GOLDAN, P. D.; ROBERTS, J.; FEHSENFELD, F. C. Review of observation-based analysis of the regional factors influencing ozone concentration. Atmosphere Environmental, Oxford, v. 34, n. 12-14, p. 2045-2061, 2000. DOI: https://doi.org/10.1016/S1352-2310(99)00459-8

ZIVKOVIC, Z.; TORINA, A.; MITRA, R.; ALONGI, A.; SCIMECA, S.; KOCAN, K. M.; GALINDO, R. C.; ALMAZAN, C.; BLOUIN, E. F.; VILLAR, M.; NIJHOF, A. M.; MANI, R.; LA, B. G.; CARACAPPA, S.; JONGEJAN, F.; DE LA FUENTE, J. Subolesin expression in response to pathogen infection in ticks. BMC Immunology, v. 11, n. 7, 2010. DOI: https://dx.doi.org/10.1186/1471-2172-11-7.

WHO_World Health Organization. Air quality guidelines for Europe. 2. ed. Copenhagen, Denmark: WHO Regional Publications, Regional Office for Europe, 2000. 288 p.

WILKS, S. D. Statistical Methods in the Atmospheric Sciences. 2. ed. San Diego: Academic Press, 2006. 649 p.

Downloads

Publicado

2018-11-05

Como Citar

Souza, A. de, & Santos, D. A. da S. (2018). ANÁLISE DAS COMPONENTES PRINCIPAIS NO PROCESSO DE MONITORAMENTO AMBIENTAL. Nativa, 6(6), 639–647. https://doi.org/10.31413/nativa.v6i6.6453

Edição

Seção

Ciências Ambientais / Environmental Sciences