MORPHOLOGICAL AND ELEMENTARY EVALUATION OF WOODEN CARBONACEOUS MATERIALS FROM ACTIVATED CARBON INDUSTRY

Autores

  • Everson do Prado Banczek edopradobanczek@yahoo.com.br
    Universidade Estadual do Centro-Oeste
  • Aline Barbiere Brugnera alibarbieri@hotmail.com
    Universidade Estadual do Centro-Oeste
  • André Luis Christoforo alchristoforo@ufscar.br
    Universidade Federal de São Carlos
  • Gilmara de Oliveira Machado gomflorestal@gmail.com
    Universidade Estadual do Centro-Oeste

DOI:

10.31413/nativa.v7i2.6419

Resumo

AVALIAÇÃO MORFOLÓGICA E ELEMENTAR DE MATERIAIS CARBONÁCEOS DE MADEIRA DA INDÚSTRIA DE CARBONO ATIVADA

 

A preocupação mundial na redução dos gases de efeito estufa para a atmosfera, combinada com leis ambientais mais rigorosas, tem levado a um aumento dos estudos sobre a energia renovável. Esta pesquisa teve como objetivo caracterizar lascas de madeira e carvão ativado por microscopia eletrônica de varredura (MEV) e espectroscopia de energia dispersiva (EDS). Os cavacos são oriundos de uma floresta de Pinus elliottii voltada para fins energéticos e foram queimados em uma fornalha de uma caldeira de geração de vapor. Esse vapor gerado pela caldeira em fornalhas apropriadas é utilizado na ativação de carvão vegetal por pequenos produtores regionais. MEV indicou um aumento na porosidade do carvão vegetal com o processo de ativação, e a análise EDS indicou que tanto os cavacos quanto os carvões, com e sem ativação, não apresentaram contaminantes, como os metais pesados. Este estudo revelou uma baixa toxicidade dos materiais lignocelulósicos à base de Pinus elliottii. A queima de cavacos de madeira na caldeira e o processo de ativação de carvão vegetal não apresentaram riscos ambientais.

Palavras-chave: energia florestal, carbonização, carvão ativado, metais, porosidade.

 

ABSTRACT:

The worldwide concern of reducing greenhouse gases into the atmosphere combined with more stringent environmental laws has led to an increase in studies of renewable energy. This research aimed to characterize wood chips and activated charcoal by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The chips came from an energy forest of Pinus elliottii and were burned in the furnace of a boiler for steam generation. This steam generated by the boiler in appropriate furnaces is used in the activation of wood charcoal from small regional producers. SEM showed an increase in the porosity of the charcoal with the activation process, and EDS analysis indicated both chips and charcoals, with and without activation, have no contaminants, such as heavy metals. This study revealed a low toxicity of lignocellulosic materials based on Pinus elliottii. The burning of wooden chips in the boiler as well as the activation process of wood charcoal did not present apparent environmental risks.

Keywords: forestry energy, carbonization, activated carbon, metals, porosity.

Biografia do Autor

Everson do Prado Banczek, Universidade Estadual do Centro-Oeste

Graduação em Química Bacharelado e Licenciatura pela Universidade Estadual do Centro Oeste (2004), doutorado em Ciências (Tecnologia Nuclear - Materiais) pelo Instituto de Pesquisas Energéticas e Nucleares (2008). Experiência profissional na área de Química, atuando principalmente nas seguintes linhas: inovação tecnológica, eletroquímica, bioenergia, biocombustíveis, biodiesel, catalisadores heterogêneos para produção de biocombustíveis, corrosão, inibidores de corrosão, fosfatização e tratamento de superfície. Orientador do mestrado em Rede em Bioenergia (UNICENTRO-UEL-UEPG-UEM-UNOESTE-UFPR). Bolsista de Produtividade de Desenvolvimento Tecnológico e extensão inovadora do CNPq - desde 2013

Referências

ACHARYA, J.; SAHU, J. N.; MOHANTY, C. R.; MEIKAP, B. C. Removal of lead (II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation. Chemical Engineering Journal, Lausanne, v. 149, n. 1-3, p. 249-262, 2009. DOI: https://dx.doi.org/10.1016/j.cej.2008.10.029

AHMAD, F.; DAUD, W. M. A. W.; AHMAD, M. A.; RADZI, R.; AZMI, A. A. The effects of CO2 activation, on porosity and surface functional groups of cocoa (Theobroma cacao) – shell based activated carbon. Journal of Environmental Chemical Engineering, v. 1, n. 3, p. 378-388, 2013. DOI: https://dx.doi.org/10.1016/j.jece.2013.06.004

AHMED, M.J., THEYDAN, S.K. Optimization of microwave preparation conditions for activated carbon from Albizia lebbeck seed pods for methylene blue dye adsorption. Journal of Analytical and Applied Pyrolysis, v. 105, p. 199–208, 2014. DOI: https://dx.doi.org/10.1016/j.jaap.2013.11.005

AI, N.; ZENG, G.; ZHOU, H.; HE, Y. Co-production of activated carbon and bio-oil from agricultural residues by molten salt pyrolysis. BioResources, Raleigh, v. 8, n. 2, p. 1551-1562, 2013.

BANGASH, F. K.; ALAM, S. Adsorption of acid blue 1 on activated carbon produced from the wood of Ailanthus altissima. Brazilian Journal of Chemical Engineering, São Paulo, v. 26, n. 2, p. 275-285, 2009. DOI: http://dx.doi.org/10.1590/S0104-66322009000200005

CUNHA, M. P. S. C., PONTES, C. L. F., A., C. I., CABRAL, M. T. F. D., NETO, Z. B., & BARBOSA, A. P. Estudo químico de 55 espécies lenhosas para geração de energia em caldeiras. Encontro Brasileiro Em Madeiras e em Estruturas de Madeira, 3., 1989, São Carlos. Anais...São Carlos: 1989. v. 2. p. 93- 121.

DEIANA, A. C.; SARDELLA, M. F.; SILVA, H.; AMAYA, A.; TANCREDI, N. Use of grape stalk, a waste of the viticulture industry, to obtain activated carbon. Journal of Hazardous Materials, Amsterdam, v. 172, n. 1, p. 13-19, 2009. DOI: https://dx.doi.org/10.1016/j.jhazmat.2009.06.095

FOO, K. Y.; HAMEED, B. H. Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating. Bioresource Technology, Essex, v. 111, p. 425-432, 2012. DOI: https://dx.doi.org/10.1016/j.biortech.2012.01.141

GAO, J.; KONG, D.; WANG, Y.; WU, J.; SUN, S.; XU, P. Production of mesoporous activated carbon from tea fruit peel residues and its evaluation of methylene blue removal from aqueous solutions. BioResources, Raleigh, v. 8, n. 2, p. 2145-2160, 2013.

GONZÁLEZ, P. G.; HERNÁNDEZ-QUIROZ, T.; GARCÍA-GONZÁLEZ, L. The use of experimental design and response surface methodologies for the synthesis of chemically activated carbons produced from bamboo. Fuel Processing Technology, Amsterdam, v.127, p.133-139, 2014. DOI: https://dx.doi.org/10.1016/j.fuproc.2014.05.035

HEIDARI, A.; YOUNESI, H.; RASHIDI, A.; GHOREYSHI, A. Adsorptive removal of CO2 on highly microporous activated carbons prepared from Eucalyptus camaldulensis wood: effect of chemical activation. Journal of Taiwan Institute of Chemical Engineers, v. 45, n. 2, p. 579-588, 2014. DOI: https://dx.doi.org/10.1016/j.jtice.2013.06.007

HERNÁNDEZ, A. M.; LABADY, M.; LAINE, J. Granular activated carbon from wood originated from tropical virgin forest. Open Journal of Forestry, v. 4, n. 3, p. 208-211, 2014. DOI: http://dx.doi.org/10.4236/ojf.2014.43027

HESAS, R. H.; ARAMI-NIYA, A.; DAUD, W. M. A. W.; SAHU, J. N. Preparation and characterization of activated carbon from apple waste by microwave-assisted phosphoric acid activation: application in methylene blue adsorption. BioResources, Raleigh, v. 8, n. 2, p. 2950-2966, 2013.

KROSCHWITZ, J. I.; HOWE-GRANT, M. Encyclopedia of chemical technology. 4. ed.New York, NJ: John Wiley & Sons, 1992. 1018 p.

HU, S.; HSIEH, Y. Preparation of activated carbon and silica particles from rice straw. ACS Sustainable Chemistry & Engineering, Austin, v. 2, n. 4, p. 726-734, 2014. DOI: https://dx.doi.org/10.1021/sc5000539

KHADIRAN, T.; HUSSEIN, M. Z.; ZAINAL, Z.; RUSLI, R. Textural and chemical properties of activated carbon prepared from tropical peat soil by chemical activation method. BioResources, Raleigh, v. 10, n. 1, p. 986-1007, 2015.

KIM, S. H.; BIDKAR, A.; NGO, H. H.; VIGNESWARAN, S.; MOON, H. Adsorption and mass transfer characteristics of metsulfuron-methyl on activated carbon. Korean Journal of Chemical Engineering, Seoul, v. 18, n. 2, p. 163-169, 2001. DOI: https://dx.doi.org/10.1007/BF02698454

KÖSEOĞLU, E; AKMIL-BAŞAR, C. Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass. Advanced Powder Technology, v. 26, n. 3, p. 811-818, 2015. DOI: https://dx.doi.org/10.1016/j.apt.2015.02.006

KRONKA, F. J. N.; BERTOLANI, F.; PONCE, R. H. A Cultura do Pinus no Brasil. São Paulo: SBS/Páginas e Letras, 2005. 156 p.

LACERDA, V. S.; LÓPEZ-SOTELO, J. B.; CORREA-GUIMARÃES, A.; HERNÁNDEZ-NAVARRO, S.; SÁNCHEZ-BÁSCONES, M.; NAVAS-GRACIA, L. M.; MARTÍN-RAMOS, P.; MARTÍN-GIL, J. Rhodamine B removal with activated carbons obtained from lignocellulosic waste. Journal of Environmental Management, London, v. 155, n. 2015, p.67-76, 2015. DOI: https://doi.org/10.1016/j.jenvman.2015.03.007

LIU, W.; ZHAO, G. Effect of temperature and time on microstructure and surface functional groups of activated carbon fibers prepared from liquefied wood. BioResources, Raleigh, v. 7, n. 4, p. 5552-5567, 2012.

LU, G.Q.; LOW, J.C.F.; LIU, C.Y.; LUA, A.C. Surface-area development of sewagesludge during pyrolysis. Fuel, London, v. 74, n. 3, p. 344-348, 1995. DOI: https://dx.doi.org/10.1016/0016-2361(95)93465-P

MACHADO, G. O.; COOKSON, L.; CHRISTOFORO, A. L.; POLITO, W. L.; SILVA, M. R.; CALIL JUNIOR, C.; LAHR, F. A. R. Wood preservation based on neem oil: evaluation of fungicidal and termiticidae effectiveness. Forest Products Journal, Madison, v. 63, p. 202-206, 2013. DOI: https://dx.doi.org/10.13073/FPJ-D-13-00050

MARSHALL, W. E.; WARTELLE, L. H.; AKIN, D. E. Flax shive as a source of activated carbon for metals remediation. BioResources, Raleigh, v. 2, n. 1, p. 82-90, 2007.

MOHAN, D.; SINGH, K. P. Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse–an agricultural waste. Water Research, New York, v. 36, n. 9, p. 2304-2318, 2002. DOI: https://dx.doi.org/10.1016/S0043-1354(01)00447-X

NABARLATZ, D.; DE CELIS, J.; BONELLI, P.; CUKIERMAN, A. L. Batch and dynamic sorption of Ni (II) ions by activated carbon based on a native lignocellulosic precursor. Journal of Environmental Management, London, v. 97, n. 2012, p. 109-115, 2012. DOI: https://dx.doi.org/10.1016/j.jenvman.2011.11.008

NAHIL, M. A.; WILLIAMS, P. T. Pore characteristics of activated carbons from the phosphoric acid chemical activation of cotton stalks. Biomass & Bioenergy, Oxford, v.37, p.142-149, 2012. DOI: https://dx.doi.org/10.1016/j.biombioe.2011.12.019

NGERNYEN, Y.; TANGSATHITKULCHAI, C.; TANGSATHITKULCHAI, M. Porous properties of activated carbon produced from Eucalyptus and wattle wood by carbon dioxide activation. Korean Journal of Chemical Engineering, Seoul, v. 23, n. 6, p.1046-1054,2006. DOI: https://dx.doi.org/10.1007/s11814-006-0028-9

REED, A. R.; WILLIAMS, P. T. Thermal processing of biomass natural fibre wastes by pyrolysis. International Journal of Energy Research, Chichester, v. 28, n. 2, p. 131-145, 2004. DOI: https://dx.doi.org/10.1002/er.956

SRINIVASAKANNAN, C.; ABU BAKAR, M. Z. Production of activated carbon from rubber wood sawdust. Biomass & Bioenergy, Oxford, v. 27, n. 1, p .89-96, 2004. DOI: https://dx.doi.org/10.1016/j.biombioe.2003.11.002

TENG, H.; YEH, T.-S.; HSU, L.-Y. Preparation of activated carbon from bituminous coal with phosphoric acid activation. Carbon, Elmsford, v. 36, n. 9, p. 1387-1395, 1998. DOI: https://dx.doi.org/10.1016/S0008-6223(98)00127-4

VARGAS, A. M. M.; CAZETTA, A. L.; GARCIA, C. A.; MORAES, J. C. G.; NOGAMI, E. M.; LENZI, E.; COSTA, W. F.; ALMEIDA, V. C. Preparation and characterization of activated carbon from a new raw lignocellulosic material: flamboyant (Delonix regia) pods. Journal of Environmental Management, London, v. 92, n. 1, p. 178-184, 2011. DOI: https://dx.doi.org/10.1016/j.jenvman.2010.09.013

XIA, Y.; MASSE, D. I.; MCALLISTER, T. A.; BEAULIEU, C.; UNGERFELD, E. Anaerobic digestion of chicken feather with swine manure or slaughterhouse sludge for biogas production. Waste Management, Elmsford, v. 32, n.2012, p.404–409, 2012. DOI: https://dx.doi.org/10.1016/j.wasman.2011.10.024

YAHIA, M. A.; AL-QODAH, Z.; NGAH, C. W. Z. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review. Renewable & Sustainable Energy Review, v. 46, p. 218-235, 2015. DOI: https://dx.doi.org/10.1016/j.rser.2015.02.051

ZHANG, J.; ZHANG, W. Preparation and characteristics of activated carbon from wood bark and its use for adsorption of Cu (II). Medžiagotyra, Kaunas, v. 20, n. 4, p. 474-478, 2014. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6400

Downloads

Publicado

2019-03-11

Como Citar

Banczek, E. do P., Brugnera, A. B., Christoforo, A. L., & Machado, G. de O. (2019). MORPHOLOGICAL AND ELEMENTARY EVALUATION OF WOODEN CARBONACEOUS MATERIALS FROM ACTIVATED CARBON INDUSTRY. Nativa, 7(2), 213–217. https://doi.org/10.31413/nativa.v7i2.6419

Edição

Seção

Engenharia Florestal / Forest Engineering

Artigos mais lidos pelo mesmo(s) autor(es)