BLUE LIGHT PROMOTES GERMINATION AND PROTOCORM DEVELOPMENT IN ASYMBIOTIC GERMINATION OF Phaius tankervilleae (Banks) Blume ‘Alba’

Autores

  • Tasanai Punjansing tasanaipun@udru.ac.th
    Department of Biology, Faculty of Science, Udon Thani Rajabhat University, Udon Thani 41000, Thailand. https://orcid.org/0009-0008-2554-393X
  • Natchanon Meesa natchanonmeesa@gmail.com
    Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand. https://orcid.org/0009-0009-4603-5827
  • Anupan Kongbangkerd anupank@nu.ac.th
    Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand. https://orcid.org/0000-0001-5515-2552
  • Phithak Inthima phithaki@nu.ac.th
    Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand. / Center of Excellence in Research for Agricultural Biotechnology, Naresuan University, Phitsanulok 65000, Thailand. https://orcid.org/0000-0002-5587-6259

DOI:

https://doi.org/10.31413/nat.v13i4.19713


Palavras-chave:

light quality, orchid, terrestrial orchid, light spectrum

Resumo

A luz azul promove a germinação assimbiótica e o desenvolvimento do protocormo de Phaius tankervilleae (Banks) Blume ‘Alba’

 

RESUMO: Phaius tankervilleae ‘alba’ é uma espécie de orquídea altamente ornamental, classificada como rara e ameaçada de extinção em diversos países. Para desenvolver um método eficiente de propagação in vitro, este estudo investigou os efeitos da qualidade da luz na germinação das sementes e no desenvolvimento dos protocormos. As sementes foram cultivadas em meio VW sob diferentes condições de luz, incluindo escuridão, LED branco frio, luz branca fria, luz branca quente, luz azul, luz vermelha, luz verde e luz amarela fluorescente, durante três meses. A maior taxa de germinação (91,3%) foi observada sob luz fluorescente azul, seguida de perto pela luz fluorescente vermelha (86,0%), sem diferença significativa entre as duas. Notavelmente, a luz fluorescente azul também promoveu a maior porcentagem de protocormos em estágios avançados (estágios 3 e 4), com 28,3%. Embora a luz fluorescente verde tenha resultado em menor taxa de germinação (61,0%), induziu uma taxa comparável de protocormos em estágios avançados (25,0%), sem diferença significativa em relação ao tratamento com luz azul. Em contraste, as sementes cultivadas no escuro apresentaram a menor taxa de germinação (18,7%) e a maior proporção de protocormos mortos (12,3%). A mortalidade dos protocormos também foi observada sob luz fluorescente branca fria, verde e amarela. Os resultados indicam que a qualidade da luz afeta significativamente a germinação das sementes e o desenvolvimento dos protocormos em P. tankervilleae ‘alba’, sendo a luz fluorescente azul a mais eficaz para promover a propagação in vitro.

Palavras-chave: qualidade da luz; orquídea; orquídea terrestre; espectro de luz; meio VW.

 

ABSTRACT: Phaius tankervilleae ‘alba’ is a highly ornamental orchid species listed as a rare and endangered species in several countries. To develop an efficient in vitro propagation method, this study investigated the effects of light quality on seed germination and protocorm development. Seeds were cultured on VW medium under various light conditions, including darkness, cool white LED, cool white, warm white, blue, red, green and yellow fluorescent lamps, for three months. The highest germination rate (91.3%) was observed under blue fluorescent light, followed closely by red fluorescent light (86.0%), with no significant difference between the two. Notably, blue fluorescent light also promoted the highest percentage of advanced-stage protocorms (stage 3+4) at 28.3%. Although green fluorescent light resulted in a lower germination rate (61.0%), it induced a comparable rate of advanced-stage protocorms (25.0%), not significantly different from the blue light treatment. In contrast, seeds cultured in darkness exhibited the lowest germination rate (18.7%) and the highest proportion of dead protocorms (12.3%). Protocorms' mortality was also observed under cool white, green and yellow fluorescent lights. The results indicate that light quality significantly affects seed germination and protocorm development in P. tankervilleae ‘alba’, with blue fluorescent light being the most effective for promoting successful in vitro propagation.

Keywords: light quality; orchid; terrestrial orchid; light spectrum; VW medium.

Referências

AEWSAKUL, N.; MANEESORN, D.; SERIVICHYASWAT, P.; TALUENGJIT, A.; NONTACHAIYAPOOM, S. Ex vitro symbiotic seed germination of Spathoglottis plicata Blume on common orchid cultivation substrates. Scientia Horticulturae, v. 160, p. 238-242, 2013. https://doi.org/10.1016/j.scienta.2013.05.034

AN, J.; KIM, P. B.; PARK, H. B.; KIM, S.; PARK, H. J.; LEE, C. W.; LEE, B. D.; KIM, N. Y.; HWANG, J. E. Effects of different growth media on in vitro seedling development of an endangered orchid species, Sedirea japonica. Plants, v. 10, n. 6, e1193, 2013. https://doi.org/10.3390/plants10061193

ARDITTI, J.; GHANI, A. K. A. Numerical and physical properties of orchid seeds and their biological implications. New Phytologist, v. 145, p. 367-421, 2000. https://doi.org/10.1046/j.1469-8137.2000.00587.x

BAE, K. H.; OH, K. H.; KIM, S. Y. Sodium hypochlorite treatment and light-emitting diode (LED) irradiation effect on in vitro germination of Oreorchis patens (Lindl.) Lindl. Journal of Plant Biotechnology, v. 41, n. 1, p. 44-49, 2014. https://doi.org/10.5010/JPB.2014.41.1.44

CASTILLO-PÉREZ, L. J.; MARTÍNEZ-SOTO, D.; FORTANELLI-MARTÍNEZ, J.; CARRANZA-ÁLVAREZ, C. Asymbiotic seed germination, in vitro seedling development, and symbiotic acclimatization of the Mexican threatened orchid Stanhopea tigrina. Plant Cell, Tissue and Organ Culture, v. 146, p. 249-257, 2021. https://doi.org/10.1007/s11240-021-02064-9

CHENG, S. F.; YEH, C. H.; JAN, C. H.; CHANG, D. C. N. Growth and development of Phaius tankervilleae (Banks) Blume when inoculated with orchid mycorrhizal fungi. African Journal of Agricultural Research, v. 7, n. 42, p. 5644-5652, 2012. https://doi.org/10.5897/AJAR12.1182

DE LUCAS, M.; PRAT, S. PIFs get BRright: phytochrome-interacting factors as integrators of light and hormonal signals. New Phytologist, v. 202, n. 4, p. 1126-1141, 2014. https://doi.org/10.1111/nph.12725

FLORES, J.; GONZÁLEZ-SALVATIERRA, C.; JURADO, E. Effect of light on seed germination and seedling shape of succulent species from Mexico. Journal of Plant Ecology, v. 9, n. 2, p. 174-179, 2016. https://doi.org/10.1093/jpe/rtv046

FOLTA, K. M.; MARUHNICH, S. A. Green light: a signal to slow down or stop. Journal of Experimental Botany, v. 58, n. 12, p. 3099-3111, 2007. https://doi.org/10.1093/jxb/erm130

FRITSCHE, Y.; PINHEIRO, M. V. M.; GUERRA, M. P. Light quality and natural ventilation have different effects on protocorm development and plantlet growth stages of the in vitro propagation of Epidendrum fulgens (Orchidaceae). South African Journal of Botany, v. 146, p. 864-874, 2022. https://doi.org/10.1016/j.sajb.2022.02.019

GODO, T.; FUJIWARA, K.; GUAN, K.; MIYOSHI, K. Effects of wavelength of LED-light on in vitro asymbiotic germination and seedling growth of Bletilla ochracea Schltr. (Orchidaceae). Plant Biotechnology, v. 28, n. 4, p. 397-400, 2011. https://doi.org/10.5511/plantbiotechnology.11.0524a

HAMID, N.; JAWAID, F. Influence of seed pre-treatment by UV-A and UV-C radiation on germination and growth of Mung beans. Pakistan Journal of Chemistry, v. 1, n. 4, p. 164-167, 2011. http://dx.doi.org/10.15228/2011.v01.i04.p04

INTHIMA, P.; SUPAIBULWATANA, K. Green LEDs lighting enhances vigorous growth and boosts bacoside production in hydroponically cultivated Bacopa monnieri (L.) Wettst. Horticulture, Environment, and Biotechnology, p. 1-17, 2025. https://doi.org/10.1007/s13580-024-00666-8

ISLAM, O. M.; MATSUI, S.; ICHIHASHI, S. Effects of light quality on seed germination and seedling growth of Cattleya orchids in vitro. Journal of the Japanese Society for Horticultural Science, v. 68, n. 6, p. 1132-1138, 1999. https://doi.org/10.2503/jjshs.68.1132

JOHNSON, T. R.; KANE, M. E.; PÉREZ, H. E. Examining the interaction of light, nutrients and carbohydrates on seed germination and early seedling development of Bletia purpurea (Orchidaceae). Plant Growth Regulation, v. 63, p. 89-99, 2011. https://doi.org/10.1007/s10725-010-9516-3

KANG, B.; GRANCHER, N.; KOYFFMANN, V.; LARDEMER, D.; BURNEY, S.; AHMAD, M. Multiple interactions between cryptochrome and phototropin blue-light signalling pathways in Arabidopsis thaliana. Planta, v. 227, p. 1091-1099, 2008. https://doi.org/10.1007/s00425-007-0683-z

KAUTH, P. J.; KANE, M. E.; VENDRAME, W. A. Comparative in vitro germination ecology of Calopogon tuberosus var. tuberosus (Orchidaceae) across its geographic range. In Vitro Cellular & Developmental Biology-Plant, v. 47, p. 148-156, 2011. https://doi.org/10.1007/s11627-010-9316-5

KUNAKHONNURUK, B.; INTHIMA, P.; KONGBANGKERD, A. In vitro propagation of Epipactis flava Seidenf., an endangered rheophytic orchid: a first study on factors affecting asymbiotic seed germination, seedling development and greenhouse acclimatization. Plant Cell, Tissue and Organ Culture, v. 135, p. 419-432, 2018. https://doi.org/10.1007/s11240-018-1475-9

KURZWEIL, H. e-Flora of Thailand: Orchidaceae. 2014. Available at: https://botany.dnp.go.th/eflora/floraspecies.html?tdcode=05933. Accessed on: 28 April 2025.

LEGRIS, M.; KLOSE, C.; BURGIE, E. S.; ROJAS, C. C. R.; NEME, M.; HILTBRUNNER, A.; WIGGE, P. A.; SCHÄFER, E.; VIERSTRA, R. D.; CASAL, J. J. Phytochrome B integrates light and temperature signals in Arabidopsis. Science, v. 354, n. 6314, p. 897-900, 2016. https://doi.org/10.1126/science.aaf5656

LIN, Y.; LI, J.; LI, B.; HE, T.; CHUN, Z. Effects of light quality on growth and development of protocorm-like bodies of Dendrobium officinale in vitro. Plant Cell, Tissue and Organ Culture, v. 105, p. 329-335, 2011. https://doi.org/10.1007/s11240-010-9871-9

MARIZ-PONTE, N.; MENDES, R. J.; SARIO, S.; MELO, P.; SANTOS, C. Moderate UV-A supplementation benefits tomato seed and seedling invigoration: a contribution to the use of UV in seed technology. Scientia Horticulturae, v. 235, p. 357-366, 2018. https://doi.org/10.1016/j.scienta.2018.03.025

NAHAR, S. J.; HAQUE, S. M.; KAZUHIKO, S. Application of chondroitin sulfate on organogenesis of two Cymbidium spp. under different sources of lights. Notulae Scientia Biologicae, v. 8, n. 2, p. 156-160, 2016. https://doi.org/10.15835/nsb829801

NIKABADI, S.; BUNN, E.; STEVENS, J.; NEWMAN, B.; TURNER, S. R.; DIXON, K. W. Germination responses of four native terrestrial orchids from south-west Western Australia to temperature and light treatments. Plant Cell, Tissue and Organ Culture, v. 118, p. 559-569, 2014. https://doi.org/10.1007/s11240-014-0507-3

OKELLO, R. C. O.; de VISSER, P. H. B.; HEUVELINK, E.; MARCELIS, L. F. M.; STRUIK, P. C. Light-mediated regulation of cell division, endoreduplication and cell expansion. Environmental and Experimental Botany, v. 121, p. 39-47, 2016. https://doi.org/10.1016/j.envexpbot.2015.04.003

PAUL, S.; KUMARIA, S.; TANDON, P. An effective nutrient medium for asymbiotic seed germination and large-scale in vitro regeneration of Dendrobium hookerianum, a threatened orchid of northeast India. AoB Plants, v. 2012, plr032, 2012. https://doi.org/10.1093/aobpla/plr032

PEREIRA, S. T. S.; SORGATO, J. C.; VENDRAME, W. A.; FARIA, R. T.; PIVETTA, K. F. L. Light and culture medium formulations for in vitro germination and development of Brassavola perrinii. Revista Ciência Agronômica, v. 53, e20207362, 2022. https://doi.org/10.5935/1806-6690.20220037

PUNJANSING, T.; NAKKUNTOD, M.; HOMCHAN, S.; INTHIMA, P.; KONGBANGKERD, A. Production and molecular identification of interspecific hybrids between Phaius mishmensis (Lindl. and Paxton) Rchb. f. and Phaius tankervilliae (Banks) Blume. Agriculture, v. 11, n. 4, e306, 2021. https://doi.org/10.3390/agriculture11040306

RASMUSSEN, H. N.; DIXON, K. W.; JERSÁKOVÁ, J.; TĚŠITELOVÁ, T. Germination and seedling establishment in orchids: a complex of requirements. Annals of Botany, v. 116, n. 3, p. 391-402, 2015. https://doi.org/10.1093/aob/mcv087

SCHENKELS, L.; SAEYS, W.; LAUWERS, A.; DE PROFT, M. P. Green light induces shade avoidance to alter plant morphology and increases biomass production in Ocimum basilicum L. Scientia Horticulturae, v. 261, e109002, 2020. https://doi.org/10.1016/j.scienta.2019.109002

SORGATO, J. C.; SOARES, J. S.; DAMIANI, C. R.; RIBEIRO, L. M. Effects of light, agar, activated charcoal, and culture medium on the germination and early development of Dendrobium seedlings. Australian Journal of Crop Science, v. 14, n. 4, p. 557-564, 2020. https://doi.org/10.21475/ajcs.20.14.04.p1528

TSUTSUMI, C.; MIYOSHI, K.; YUKAWA, T.; KATO, M. Responses of seed germination and protocorm formation to light intensity and temperature in epiphytic and terrestrial Liparis (Orchidaceae). Botany, v. 89, n. 12, p. 841-848, 2011. https://doi.org/10.1139/b11-066

VACIN, E. F.; WENT, F. W. Some pH changes in nutrient solutions. Botanical Gazette, v. 110, n. 4, p. 605-613, 1949.

VOGEL, I. N.; MACEDO, A. F. Influence of IAA, TDZ, and light quality on asymbiotic germination, protocorm formation, and plantlet development of Cyrtopodium glutiniferum Raddi., a medicinal orchid. Plant Cell, Tissue and Organ Culture, v. 104, p. 147-155, 2011. https://doi.org/10.1007/s11240-010-9810-9

WANG, Y.; TONG, Y.; CHU, H.; CHEN, X.; GUO, H.; YUAN, H.; Yan, D.; ZHENG, B. Effects of different light qualities on seedling growth and chlorophyll fluorescence parameters of Dendrobium officinale. Biologia, v. 72, n. 7, p. 735-744, 2017. https://doi.org/10.1515/biolog-2017-0081

ZENG, S.; HUANG, W.; WU, K.; ZHANG, J.; TEIXEIRA da SILVA, J. A.; DUAN, J. In vitro propagation of Paphiopedilum orchids. Critical reviews in biotechnology, v. 36, n. 3, p. 521-534, 2016. https://doi.org/10.3109/07388551.2014.993585

ZETTLER, L. W.; MCINNIS JR, T. M. Light enhancement of symbiotic seed germination and development of an endangered terrestrial orchid (Platanthera integrilabia). Plant Science, v. 102, n. 2, p. 133-138, 1994. https://doi.org/10.1016/0168-9452(94)90030-2

ZHANG, S.; YANG, Y.; LI, J.; QIN, J.; ZHANG, W.; HUANG, W.; HU, H. Physiological diversity of orchids. Plant diversity, vol. 40, n. 4, p. 196-208, 2018. https://doi.org/10.1016/j.pld.2018.06.003

ZHAO, D. K.; MOU, Z. M.; RUAN, Y. L. Orchids acquire fungal carbon for seed germination: pathways and players. Trends in Plant Science, v. 29, p. 733-741, 2024a. https://doi.org/10.1016/j.tplants.2024.02.001

ZHAO, J.; HE, Y.; ZHANG, H.; WANG, Z. Advances in the molecular regulation of seed germination in plants. Seed Biology, v. 3, e006, 2024b. https://doi.org/10.48130/seedbio-0024-0005

Downloads

Publicado

2025-12-31

Edição

Seção

Ciências Ambientais / Environmental Sciences

Como Citar

BLUE LIGHT PROMOTES GERMINATION AND PROTOCORM DEVELOPMENT IN ASYMBIOTIC GERMINATION OF Phaius tankervilleae (Banks) Blume ‘Alba’. (2025). Nativa, 13(4), 713-719. https://doi.org/10.31413/nat.v13i4.19713

Artigos mais lidos pelo mesmo(s) autor(es)