SYNTHESIS OF SILVER NANOPARTICLES USING Aspergillus niger Tiegh AND ITS EFFECTS ON Xanthomonas oryzae pv. oryzae

Autores

  • Merian Dino Gamorot merian.gamorot22@gmail.com
    Department of Agronomy, College of Agriculture, Mindanao State University - Lanao del Norte Agricultural College, Lanao del Norte, Philippines. https://orcid.org/0009-0005-0050-2910
  • Carolina Danio Amper carolinaamper@gmail.com
    Department of Plant Pathology, College of Agriculture, Central Mindanao University, Musuan, Bukidnon, Philippines. https://orcid.org/0009-0008-0331-2954
  • Mellprie Bangga Marin marinmellprie@gmail.com
    Department of Plant Pathology, College of Agriculture, Central Mindanao University, Musuan, Bukidnon, Philippines. https://orcid.org/0009-0004-6916-9047
  • Mark Jun Atchuela Rojo mackyrojo@gmail.com
    Department of Forest Biological Sciences, College of Forestry and Environmental Science, Central Mindanao University, Musuan, Bukidnon, Philippines. https://orcid.org/0000-0002-3077-7991
  • Regiez Novem Piquero Idulsa sf.regiez.idulsa@cmu.edu.ph
    Center for Natural Products Research, Development, and Extension, Central Mindanao University, Musuan, Bukidnon, Philippines. https://orcid.org/0009-0008-1050-5068

DOI:

https://doi.org/10.31413/nat.v13i1.18736


Palavras-chave:

synthesis, AgNPs, reducing agent

Resumo

Silver nanoparticles (AgNPs) have become widely recognized for their potent antibacterial properties. The current study develops an environment-friendly approach using Aspergillus niger Tiegh as a reducing agent in the synthesis of AgNPs. Hence, this study aimed to evaluate the nanomaterials synthesized with optimized concentrations of silver nitrate (0.5, 1.0 and 1.5 mM) and assessed its antibacterial activity against Xanthomonas oryzae pv. oryzae causing bacterial leaf blight in rice. Optimizing different concentrations of silver nitrate in the biosynthetic process revealed significant effects on the size of synthesized AgNPs. The nanoparticles were characterized through UV-visible spectroscopy, SEM coupled with EDX and FTIR Spectroscopy. The study concluded that 1.0 mM concentration yields the smallest synthesized nanoparticles sizes ranging from 68-99 nm. In vitro assay was done through agar well diffusion method and showed high significance (p<0.0000) against Xanthomonas oryzae pv. oryzae.

Keywords: synthesis; AgNPs; reducing agent.

 

Síntese de nanopartículas de prata usando Aspergillus niger Tiegh e seus efeitos sobre Xanthomonas oryzae pv. oryzae

 

RESUMO: As nanopartículas de prata (AgNPs) tornaram-se amplamente reconhecidas por suas potentes propriedades antibacterianas. O estudo atual desenvolve uma abordagem ecologicamente correta usando Aspergillus niger Tiegh como um agente redutor na síntese de AgNPs. Portanto, este estudo teve como objetivo avaliar os nanomateriais sintetizados com concentrações otimizadas de nitrato de prata (0,5, 1,0 e 1,5 mM) e avaliou sua atividade antibacteriana contra Xanthomonas oryzae pv. oryzae, causadora da queima bacteriana das folhas em arroz. A otimização de diferentes concentrações de nitrato de prata no processo biossintético revelou efeitos significativos no tamanho das AgNPs sintetizadas. As nanopartículas foram caracterizadas por espectroscopia UV-visível, SEM acoplada a espectroscopia EDX e FTIR. O estudo concluiu que a concentração de 1,0 mM produz os melhores tamanhos de nanopartículas sintetizadas, variando de 68 a 99 nm. O ensaio in vitro foi feito pelo método de difusão em poço de ágar e mostrou alta significância (p<0,0000) contra Xanthomonas oryzae pv. oryzae.

Palavras-chave: síntese; AgNPs; agente redutor.

Referências

AKHTAR, K.; KHAN, S. A.; KHAN, S. B.; ASIRI, A. M. Scanning electron microscopy: Principle and applications in nanomaterials characterization. In: SHARMA, S. (Ed.) Handbook of materials characterization. Springer, Cham, 2018. p. 113-145. https://doi.org/10.1007/978-3-319-92955-2_4

AL-ZUBAIDI, S.; AL-AYAFI, A.; ABDELKADER, H. Biosynthesis, characterization and antifungal activity of silver nanoparticles by Aspergillus niger isolate. Journal of Nanotechnology Research, v. 1, n. 1, p. 23-36, 2019. https://doi.org/10.26502/jnr.2688-8521002

BALAKUMARAN, M. D.; RAMACHANDRAN, R.; KALAICHEILVAN, P. T. Exploitation of endophytic fungus Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities. Microbiology Research, v. 178, p. 9-17, 2015. https://doi.org/10.1016/j.micres.2015.05.009.

BALASHANMUGAM, P.; BALAKUMARAN, M.D.; MURUGAN, R.; DHANAPAL, K. Phytogenic synthesis of silver nanoparticles, optimization and evaluation of in vitro antifungal activity against human and plant pathogens. Microbiology Research, v. 192, p. 52-64, 2016. https://doi.org/10.1016/j.micres.2016.06.004

BERNARD, M.; LATGÉ, J. Aspergillus fumigatus cell wall: composition and biosynthesis. Medical Mycology, v. 39, n. 1, p. 9-17, 2001. https://doi.org/10.1080/714030981

BILAL, M.; RASHEED, T.; IQBAL, H. M.; LI, C.; HU, H.; ZHANG, X. Development of silver nanoparticles loaded chitosan-alginate constructs with biomedical potentialities. International Journal Biology Macromolecules, v. 105, n. 1, p. 393-400, 2019. https://doi.org/10.1016/j.ijbiomac.2017.07.047

CHAN, Y.; DON, M. Biosynthesis and structural characterization of Ag nanoparticles from white rot fungi. Materials Science and Engineering: C, v. 33, n. 1, p. 282-288, 2013. https://doi.org/10.1016/j.msec.2012.08.041

CLEMENT, J. L.; JARRETT, P. S. Antibacterial silver. Met Based Drugs, v. 1, n. 5-6, p. 467-482, 1994. https://doi.org/10.1155/MBD.1994.467

CONTINI, C.; HINDLEY, J. W.; MACDONALD, T. J.; CARVALHO, V. C.; RAMOS, D. J.; ALMEIDA, R. M.; SAMPAIO, P. R.; STRICKLAND, M. M.; MENTZ, M. C. Size dependency of gold nanoparticles interacting with model membranes. Communications Chemistry, v. 3, e130, 2020. https://doi.org/10.1038/s42004-020-00377-y

DURÁN, N.; NAKAZATO, G.; SEABRA, A. Antimicrobial activity of biogenic silver nanoparticles and silver chloride nanoparticles: an overview and comments. Applied Microbiology and Biotechnology, v. 100, n. 15, p. 6555-6570, 2016. https://doi.org/10.1007/s00253-016-7657-7

EL-ANSARY, A. E.; OMRAN, A. A. A.; MOHAMED, H. I.; EL-MAHDY, O. M. Green synthesized silver nanoparticles mediated by Fusarium nygamai isolate AJTYC1: characterizations, antioxidant, antimicrobial, anticancer, and photocatalytic activities and cytogenetic effects. Environmental Science and Pollution Research, v. 30, p. 100477-100499, 2023. https://doi.org/10.1007/s11356-023-29414-8

EXCONDE, O. R. Yield losses due to bacterial leaf blight of rice. Philippine Agriculturist, v. 57, p. 128-140, 1973.

GAHLAWAT, G.; CHOUDHURY, A.R. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Advances, v. 9, n. 23, p. 12944-12967, 2019. https://doi.org/10.1039/c8ra10483b

GUILGER-CASAGRANDE, M.; DE LIMA, R. Synthesis of silver nanoparticles mediated by fungi: a review. Frontiers in Bioengineering and Biotechnology, v. 7, e287, 2019. https://doi.org/10.3389/fbioe.2019.00287.

HARUTA, M. Nanoparticulate gold catalysts for low-temperature CO oxidation. Journal of New Materials for Electrochemical Systems, v. 7, n. 3, p. 163–172, 2004. doi:10.1002/chin.200448226.

HASHEM, A. H.; SAIED, E.; AMIN, B. H.; ALOTIBI, F. O.; AL-ASKAR, A. A.; ARISHI, A. A.; ELKADY, F. M.; ELBAHNASAWY, M. Antifungal activity of biosynthesized silver nanoparticles (AgNPs) against Aspergilli causing aspergillosis: ultrastructure study. Journal of Functional Biomaterials, v. 13, n. 4, e242, 2022. https://doi.org/10.3390/jfb13040242

HASSAN, S; HANIF, E; KHAN, U; TANOLI, M.A. Antifungal activity of silver nanoparticles from Aspergillus niger. Pakistan Journal of Pharmaceutical Sciences, v. 32, n. 3, p. 1163-1166, 2019.

IDER, M.; ABDERRAFI, K.; EDDAHBI, A.; OUASKIT, S.; KASSIBA, A. Silver metallic nanoparticles with surface plasmon resonance: synthesis and characterizations. Journal of Cluster Science, v. 28, p. 1051-1069, 2016. https://doi.org/10.1007/s10876-016-1080-1

JALALI, E.; MAGHSOUDI, S.; NOROOZIAN, E. A novel method for biosynthesis of different polymorphs of TiO₂ nanoparticles as a protector for Bacillus thuringiensis from ultraviolet. Scientific Reports, v. 10, e426, 2020. https://doi.org/10.1038/s41598-019-57407-6

KAPOOR, Sahil; SOOD, Hemant; SAXENA, Shweta; CHAURASIA, O. M. Green synthesis of silver nanoparticles using Rhodiola imbricata and Withania somnifera root extract and their potential catalytic, antioxidant, cytotoxic and growth-promoting activities. Bioprocess and Biosystems Engineering, v. 45, p. 1-16, 2022. https://doi.org/10.1007/s004

KHORRAMI, S.; ZARRABI, A.; KHALEGHI, M.; DANAEI, M.; MOZAFARI, M. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. International Journal of Nanomedicine, v. 13, p. 8013-8024, 2018. https://doi.org/10.2147/IJN.S189295

LOTFY, W.; ALKERSH, B.; SABRY, S.; GHOZLAN, H. Biosynthesis of silver nanoparticles by Aspergillus terreus: characterization, optimization, and biological activities. Frontiers in Bioengineering and Biotechnology, v. 9, e633468, 2021. https://doi.org/10.3389/fbioe.2021.633468

MORONES, J.; ELECHIGUERRA, J.; CAMACHO, A; HOLT, K; KOURI, J.; RAMÍREZ, J; YACAMAN, M. The bactericidal effect of silver nanoparticles. Nanotechnology, v. 16, n. 10, p. 2346-2353, 2005. https://doi.org/10.1088/0957-4484/16/10/059

NINGANAGOUDA, S.; RATHOD, V.; SINGH, D. Characterization and biosynthesis of silver nanoparticles using a fungus Aspergillus niger. International Letters of Natural Sciences, v. 15, p. 49-57, 2014. https://doi.org/10.56431/p-hwnei8

OTHMAN, A. M.; ELSAYED, M. A.; AL-BALAKOCY, N. G.; HASSAN, M. M.; ELSHAFEI, A. M. Biosynthesis and characterization of silver nanoparticles induced by fungal proteins and its application in different biological activities. Journal of Genetic Engineering and Biotechnology, v. 17, n. 1, e8, 2019. https://doi.org/10.1186/s43141-019-0008-1

PARK, H.J .; KIM, S. H.; KIM, H. J.; CHOI, S. H. A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathology Journal, v. 22, n. 3, p. 295-302, 2006. https://doi.org/10.5423/PPJ.2006.22.3.295

PASHA, A.; KUMBHAKAR, D.; SANA, S.; RAVINDER, D.; LAKSHMI, V.; KALANGI, S.; PAWAR, S. Role of biosynthesized Ag-NPs Using Aspergillus niger (MK503444.1) in antimicrobial, anti-cancer and anti-angiogenic activities. Front Pharmacology, v. 25, n. 12, e812474, 2022. https://doi.org/10.3389/fphar.2021.812474

PETIT, A. N.; FONTAINE, F.; VATSA, P. I. Fungicide impacts on photosynthesis in crop plants. Photosynthesis Research, v. 113, n. 1, p. 315-326, 2012. https://doi.org/10.1007/s11120-012-9719-8

RAMKUMAR, V. S.; PUGAZHENDHI, A.; GOPALAKRISHNAN, K.; SIVAGURUNATHAN, P.; SARATALE, G. D.; DUNG. T. N. B.; KANNAPIRAN, E. Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties. Biotechnology Reports, v. 14, p. 1-7, 2017. https://doi.org/10.1016/j.btre.2017.02.001

RHIM, J. W.; WANG, L. F. Preparation and characterization of carrageenan-based nanocomposite films reinforced with clay mineral and silver nanoparticles. Applied Clay Science, v. 97-98, p. 174-181, 2014. https://doi.org/10.1016/j.clay.2014.05.025

SASTRY, M.; AHMAD, A.; KHAN, M. I.; KUMAR, R. Biosynthesis of metal nanoparticles using fungi and actinomycete. Current Science, v. 85, n. 2, p. 162-170, 2003.

TSUJI, T.; IRYO, K.; WATANABE, N.; TSUJI, M. Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Applied Surface Science, v. 202, n. 1-2, p. 80-85, 2002. https://doi.org/10.1016/S0169-4332(02)00936-4

VERDIER, V.; VERA, C.; LEACH, C. E. Controlling rice bacterial blight in Africa: needs and prospects. Journal of Biotechnology, v. 159, p. 320-328, 2012. https://doi.org/10.1016/j.jbiotec.2011.09.020.

YADAV, A.; KON, K.; KRATOSOVA, G.; DURAN, N.; INGLE, A. P.; RAI, M. Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnology Letters, v. 37, n. 11, p. 2099-2120, 2015. https://doi.org/10.1007/s10529-015-1901-6

ZHANG, X. F.; LIU, Z. G.; SHEN, W.; GURUNATHAN, S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, v. 17, n. 9, p. 1534, 2016. https://doi.org/10.3390/ijms17091534

ZHANG, X.; YAN, S; TYAGI, R.D.; SURAMPALLI, R.Y. Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere, v. 82, n. 4, p. 489-494, 2011. https://doi.org/10.1016/j.chemosphere.2010.10.023

Downloads

Publicado

2025-03-06

Edição

Seção

Bioprospecção e Biotecnologia / Bioprospecting and Biotechnology

Como Citar

SYNTHESIS OF SILVER NANOPARTICLES USING Aspergillus niger Tiegh AND ITS EFFECTS ON Xanthomonas oryzae pv. oryzae. (2025). Nativa, 13(1), 38-45. https://doi.org/10.31413/nat.v13i1.18736

Artigos mais lidos pelo mesmo(s) autor(es)