BIOHYDROGEN AS A RENEWABLE ENERGY SOURCE: PRODUCTION TECHNOLOGIES, FEEDSTOCK EFFICIENCY, AND APPLICATIONS IN AGRICULTURE

Autores

  • Bagus Irawan bagusirawan.mt@gmail.com
    Doctorate Program in Environmental Science, School of Postgraduate Studies, Universitas Diponegoro, Indonesia. https://orcid.org/0009-0006-2642-4516
  • Syafrudin Syafrudin syafrudin@lecturer.undip.ac.id
    Department of Environmental Engineering, Faculty of Engineering Universitas Diponegoro, Semarang, Indonesia. https://orcid.org/0000-0002-1187-6361
  • Mochamad Arief Budihardjo m.budihardjo@ft.undip.ac.id
    Department of Environmental Engineering, Faculty of Engineering Universitas Diponegoro, Semarang, Indonesia. https://orcid.org/0000-0002-1256-3076

DOI:

https://doi.org/10.31413/nat.v13i1.18680


Palavras-chave:

sustainability, agricultural energy, biomass conversion, dark fermentation, carbon reduction

Resumo

This review examines biohydrogen's potential as a renewable energy source, focusing on production technologies, feedstock efficiency, and agricultural applications. Key technologies include dark fermentation, which has been identified as an efficient, environmentally friendly process for biohydrogen production from organic waste and agricultural residues. The study highlights the benefits of biohydrogen for sustainable agriculture, including reduced carbon emissions and energy efficiency. Quantitative data supports biohydrogen's role in decarbonizing agriculture, particularly in energy-intensive activities like irrigation and soil preparation. The findings suggest that biohydrogen can be sustainably integrated into agricultural systems, providing a circular economy solution by converting waste into high-energy, low-emission fuel.

Keywords: sustainability; agricultural energy; biomass conversion; dark fermentation; carbon reduction.

 

Biohidrogênio como fonte de energia renovável: tecnologias de produção, eficiência de matéria-prima e aplicações na agricultura

 

RESUMO: Esta revisão examina o potencial do biohidrogênio como fonte de energia renovável, com foco em tecnologias de produção, eficiência de matéria-prima e aplicações agrícolas. As principais tecnologias incluem a fermentação escura, que foi identificada como um processo eficiente e ecologicamente correto para a produção de biohidrogênio a partir de resíduos orgânicos e resíduos agrícolas. O estudo destaca os benefícios do biohidrogênio para a agricultura sustentável, incluindo redução das emissões de carbono e eficiência energética. Os dados quantitativos apoiam o papel do biohidrogênio na descarbonização da agricultura, particularmente em atividades com uso intensivo de energia, como irrigação e preparação do solo. As descobertas sugerem que o biohidrogênio pode ser integrado de forma sustentável aos sistemas agrícolas, fornecendo uma solução de economia circular ao converter resíduos em combustível de alta energia e baixa emissão.

Palavras-chave: sustentabilidade; energia agrícola; conversão de biomassa; fermentação escura; redução de carbono.

Referências

AJORLOO, M.; GHODRAT, M.; SCOTT, J.; STREZOV, V. Experimental analysis of the effects of feedstock composition on the plastic and biomass co-gasification process. Renewable Energy, v. 231, e120960, 2024. https://doi.org/10.1016/j.renene.2024.120960

AKRAM, F.; FATIMA, T.; IBRAR, R.; UL HAQ, I. Biohydrogen: Production, promising progressions, and challenges of a green carbon-free energy. Sustainable Energy Technologies and Assessments, v. 69, e103893, 2024. https://doi.org/10.1016/j.seta.2024.103893

ARUN, J.; SASIPRABA, T.; GOPINATH, K. P.; PRIYADHARSINI, P.; NACHIAPPAN, S.; NIRMALA, N.; DAWN, S. S.; THUY LAN CHI, N.; PUGAZHENDHI, A. Influence of biomass and nanoadditives in dark fermentation for enriched bio-hydrogen production: A detailed mechanistic review on pathway and commercialization challenges. Fuel, v. 327, e124112, 2022. https://doi.org/10.1016/j.fuel.2022.125112

AZADVAR, S.; TAVAKOLI, O. Data-driven interpretation, comparison, and optimization of hydrogen production from supercritical water gasification of biomass and polymer waste: Applying ensemble and differential evolution in machine learning algorithms. International Journal of Hydrogen Energy, v. 85, p. 511-525, 2024. https://doi.org/10.1016/j.ijhydene.2024.08.081

DIAS, F. G.; VARGAS, J. V. C.; MARTINS, L. S.; ROSA, M. P.; BALMANT, W.; MARIANO, A. B.; PARISE, J. A. R.; ORDONEZ, J. C.; KAVA, V. M. Modeling, simulation, and optimization of hydrogen production from microalgae in compact photobioreactors. Algal Research, v. 71, e103065, 2023. https://doi.org/10.1016/j.algal.2023.103065.

EDOU, D. J. N.; ONWUDILI, J. A. Comparative techno-economic modeling of large-scale thermochemical biohydrogen production technologies to fuel public buses: A case study of West Midlands region of England. Renewable Energy, v. 189, p. 704-716, 2022. https://doi.org/10.1016/j.renene.2022.02.074

EL-QELISH, M.; EL-SHAFAI, S. A.; AZOUZ, R. A. M.; RASHAD, E.; ELGARAHY, A. M. From seashells to sustainable energy: Trailblazing the utilization of Anadara uropigimelana shells for sustainable biohydrogen production from leftover cooking oil. Journal of Environmental Chemical Engineering, v. 12, n. 2, e111914, 2024. https://doi.org/10.1016/j.jece.2024.111914

ELSHOBARY, M.; ABDULLAH, E.; ABDEL-BASSET, R.; METWALLY, M.; EL-SHEEKH, M. Maximising biofuel production from algal biomass: A study on biohydrogen and bioethanol production using Mg-Zn ferrite nanoparticles. Algal Research, v. 81, e103595, 2024. https://doi.org/10.1016/j.algal.2024.103595

FAWAD, A.; QYYUM, M. A.; UL JABBAR, A. A comprehensive simulation study of integrated gasification, enrichment, and separation processes for biohydrogen production from sugarcane bagasse. International Journal of Hydrogen Energy, In Press, 2024. https://doi.org/10.1016/j.ijhydene.2024.05.332

GALAL, A.; ELGARAHY, A. M.; HAROUN, B.; SAFWAT, S. M.; EL-QELISH, M.; FAHMI, A. A. Enhanced biohydrogen production from thermally hydrolyzed pulp and paper sludge via Al2O3 and Fe3O4 nanoparticles. Chemical Engineering Research and Design, v. 210, p. 82-96, 2024. https://doi.org/10.1016/j.cherd.2024.08.019

GOREN, A. Y.; DINCER, I.; KHALVATI, A. Green biohydrogen production from renewable plant-based resources: A comparative evaluation. Process Safety and Environmental Protection, v. 185, p. 947-977, 2024. https://doi.org/10.1016/j.psep.2024.03.056

GORIA, K.; SINGH, H. M.; SINGH, A.; KOTHARI, R.; TYAGI, V. V. Insights into biohydrogen production from algal biomass: Challenges, recent advancements and future directions. International Journal of Hydrogen Energy, v. 52, p. 127-151, 2024. https://doi.org/10.1016/j.ijhydene.2023.03.174

GOVEAS, L. C.; NAYAK, S.; KUMAR, P. S.; VINAYAGAM, R.; SELVARAJ, R.; RANGASAMY, G. Recent advances in fermentative biohydrogen production. International Journal of Hydrogen Energy, v. 54, p. 200-217, 2024. https://doi.org/10.1016/j.ijhydene.2023.04.208

KIM, S. M.; SIM, Y. B.; YANG, J.; KO, J.; KIM, D. H.; KIM, S. H. High-rate continuous biohydrogen (Bio-H₂) production from rice straw hydrolysate using a dynamic membrane bioreactor (DMBR). International Journal of Hydrogen Energy, v. 71, p. 465-472, 2024. https://doi.org/10.1016/j.ijhydene.2024.05.197

KOVALEV, A. A.; KOVALEV, D. A.; PANCHENKO, V. A.; ZHURAVLEVA, E. A.; LAIKOVA, A. A.; SHEKHURDINA, S. V.; IVANENKO, A. A.; LITTY, Y. V. Energy efficiency of hydrogen production during dark fermentation. International Journal of Hydrogen Energy, v. 87, p. 171-178, 2024. https://doi.org/10.1016/j.ijhydene.2024.08.473

LIN, H.; ZHANG, M.; CHAUHAN, B. S.; AYED, H.; KHADIMALLAH, M. A.; TANG, X.; MAHARIQ, I. Development, kinetic analysis, and economic feasibility of different corn stover-driven biorefineries to produce biohydrogen, bioethanol, and biomethane: A comparative analysis. Renewable Energy, v. 237, e121625, 2024. https://doi.org/10.1016/j.renene.2024.121625

MACHHIRAKE, N. P.; VANAPALLI, K. R.; KUMAR, S.; MOHANTY, B. Biohydrogen from waste feedstocks: An energy opportunity for decarbonization in developing countries. Environmental Research, v. 252, e119028, 2024. https://doi.org/10.1016/j.envres.2024.119028

MARTÍNEZ-FRAILE, C.; MUÑOZ, R.; SIMORTE, M. T.; SANZ, I.; GARCÍA-DEPRAECT, O. Biohydrogen production by lactate-driven dark fermentation of real organic wastes derived from solid waste treatment plants. Bioresource Technology, v. 403, e130846, 2024. https://doi.org/10.1016/j.biortech.2024.130846

MUSHARAVATI, F.; AHMAD, A.; JAVED, M. H.; SAJID, K.; NIZAMI, A. S. Advancing biohydrogen production from organic fraction of municipal solid waste through thermal liquefaction. International Journal of Hydrogen Energy, In Press, 2024. https://doi.org/10.1016/j.ijhydene.2024.05.144

NAIDOO, J. C.; MOODLEY, P.; SANUSI, I. A.; SEWSYNKER-SUKAI, Y.; MEYER, E. L.; GUEGUIM KANA, E. Microwave-assisted sequential green liquor-inorganic salt pretreatment for enhanced sugar recovery from sorghum leaves towards bioethanol and biohydrogen production. Renewable Energy, v. 225, e120225, 2024. https://doi.org/10.1016/j.renene.2024.120225

ONWUEMEZIE, L.; DARABKHANI, H. G. Biohydrogen production from solar and wind assisted AF-MEC coupled with MFC, PEM electrolysis of H₂O and H₂ fuel cell for small-scale applications. Renewable Energy, v. 224, e120160, 2024. https://doi.org/10.1016/j.renene.2024.120160.

POMDAENG, P.; CHU, C. Y.; MASA-AD, A.; NGAMNURAK, P.; SETTHAPUN, W.; SINTUYA, H. An innovative acid-resistant elephant dung biochar powder for fermentative biohydrogen production improvement from food waste slurry. International Journal of Hydrogen Energy, In Press, 2024. https://doi.org/10.1016/j.ijhydene.2024.10.123

QYYUM, M. A.; IHSANULLAH, I.; AHMAD, R.; ISMAIL, S.; KHAN, A.; NIZAMI, A. S.; TAWFIK, A. Biohydrogen production from real industrial wastewater: Potential bioreactors, challenges in commercialization and future directions. International Journal of Hydrogen Energy, v. 47, n. 88, p. 37154-37170, 2022. https://doi.org/10.1016/j.ijhydene.2022.01.195

QYYUM, M. A.; ISMAIL, S.; NI, S. Q.; IHSANULLAH, I.; AHMAD, R.; KHAN, A.; TAWFIK, A.; NIZAMI, A. S.; LEE, M. Harvesting biohydrogen from industrial wastewater: Production potential, pilot-scale bioreactors, commercialization status, techno-economics, and policy analysis. Journal of Cleaner Production, v. 340, e130809, 2022. https://doi.org/10.1016/j.jclepro.2022.130809

RAMZAN, H.; USMAN, M.; NADEEM, F.; SHAHZAIB, M.; UR RAHMAN, M.; SINGHANIA, R. R.; JABEEN, F.; PATEL, A. K.; QING, C.; LIU, S.; PIECHOTA, G.; TAHIR, N. Depolymerisation of lignin: Recent progress towards value-added chemicals and biohydrogen production. Bioresource Technology, v. 386, e129492, 2023. https://doi.org/10.1016/j.biortech.2023.129492

RANI, P.; KUMAR YADAV, D.; YADAV, A.; RAM BISHNOI, N.; KUMAR, V.; RAM, C.; PUGAZHENDHI, A.; KUMAR, S. S. Frontier in dark fermentative biohydrogen production from lignocellulosic biomass: Challenges and future prospects. Fuel, v. 366, e131187, 2024. https://doi.org/10.1016/j.fuel.2024.131187

REN, C.; ZHANG, S.; LI, Q.; JIANG, Q.; LI, Y.; GAO, Z.; CAO, W.; GUO, L. Pilot composite tubular bioreactor for outdoor photo-fermentation hydrogen production: From batch to continuous operation. Bioresource Technology, v. 401, e130705, 2024. https://doi.org/10.1016/j.biortech.2024.130705

REZK, H.; ALAHMER, A.; OLABI, A. G.; SAYED, E. T. Application of artificial intelligence and red-tailed hawk optimization for boosting biohydrogen production from microalgae. International Journal of Thermofluids, v. 24, e100876, 2024. https://doi.org/10.1016/j.ijft.2024.100876

ROZINA; EMMANUEL, O.; EZEJI, T. C. Exploring the synergy of nanomaterials and microbial cell factories during biohydrogen and biobutanol production from different carbon sources. Sustainable Chemistry for the Environment, v. 6, e100098, 2024. https://doi.org/10.1016/j.scenv.2024.100098

SHARMA, A. K.; KUMAR GHODKE, P.; GOYAL, N.; NETHAJI, S.; CHEN, W. H. Machine learning technology in biohydrogen production from agriculture waste: Recent advances and future perspectives. Bioresource Technology, v. 364, e128076, 2022. https://doi.org/10.1016/j.biortech.2022.128076

SILVA, G. O. R.; CARPANEZ, T. G.; DOS SANTOS, C. R.; CASELLA, G. S.; MOREIRA, V. R.; DE PAULA, E. C.; AMARAL, M. C. S. Biohydrogen production from wastewater: Production technologies, environmental and economic aspects. Journal of Environmental Chemical Engineering, v. 12, n. 5, e114104, 2024. https://doi.org/10.1016/j.jece.2024.114104

SINGH, T.; SEHGAL, A.; SINGH, R.; SHARMA, S.; PAL, D. B.; TASHKANDI, H. M.; RADDADI, R.; HARAKEH, S.; HAQUE, S.; SRIVASTAVA, M.; ALY HASSAN, A.; SRIVASTAVA, N.; GUPTA, V. K. Algal biohydrogen production: Impact of biodiversity and nanomaterials induction. Renewable and Sustainable Energy Reviews, v. 183, e113389, 2023. https://doi.org/10.1016/j.rser.2023.113389

SRIVASTAVA, N.; SINGH, R.; LAL, B.; HAQUE, S. Evaluation of bioprocess parameters for pilot scale fermentative biohydrogen production using organic waste: Environmental remediation, techno-economic challenges & future solutions. International Journal of Hydrogen Energy, In Press, e211, 2024. https://doi.org/10.1016/j.ijhydene.2024.05.211

SULTANA, N.; HOSSAIN, S. M. Z.; ALJAMEEL, S. S.; OMRAN, M. E.; RAZZAK, S. A.; HAQ, B.; HOSSAIN, M. M. Biohydrogen from food waste: Modeling and estimation by machine learning based super learner approach. International Journal of Hydrogen Energy, v. 48, n. 49, p. 18586-18600, 2023. https://doi.org/10.1016/j.ijhydene.2023.01.339

TAGNE, R. F. T.; COSTA, P.; CASELLA, S.; FAVARO, L. Optimisation of biohydrogen production by dark fermentation of African food-processing waste streams. International Journal of Hydrogen Energy, v. 49, p. 266-276, 2024. https://doi.org/10.1016/j.ijhydene.2023.07.348

THIRUMALAIVASAN, N.; NANGAN, S.; KANAGARAJ, K.; RAJENDRAN, S. Assessment of sustainability and environmental impacts of renewable energies: focusing on biogas and biohydrogen (biofuels) production. Process Safety and Environmental Protection, v.189, p. 467-485, 2024. https://doi.org/10.1016/j.psep.2024.06.063

UMER, M.; BRANDONI, C.; TRETSIAKOVA, S.; HEWITT, N.; DUNLOP, P.; MOKIM, M. D.; ZHANG, K.; HUANG, Y. Hydrogen production through polyoxometalate catalyzed electrolysis from biomass components and food waste. Results in Engineering, v. 23, e102803, 2024. https://doi.org/10.1016/j.rineng.2024.102803

UMUNNAWUIKE, C.; MAHAT, S. Q. A.; NWAICHI, P. I.; MONEY, B.; AGI, A. Biohydrogen production for the sustainable energy transition: A bibliometric and systematic review of the reaction mechanisms, challenges, knowledge gaps and emerging trends. Biomass and Bioenergy, v. 188, e107345, 2024. https://doi.org/10.1016/j.biombioe.2024.107345

VINAYAGAM, M.; GRACE, L. K. J.; RANJIT, P. S.; PARIKH, S.; VENKATESH, R.; SOUDAGAR, M. E. M.; AL OBAID, S.; ALHARBI, S. A.; RAMACHANDARAMURTHY, V. K. Synergistic development of nonvascular species microalgae for bio-hydrogen production featured with nano titanium dioxide additive. Process Safety and Environmental Protection, In Press, 2024. https://doi.org/10.1016/j.psep.2024.02.080

YÖRÜKLÜ, H. C.; COŞKUNER FILIZ, B.; KANTÜRK FIGEN, A.; ÖZKAYA, B. A multi-criteria decision-making analysis for feasibility of nanoparticle addition in biohydrogen production enhancement for scaling-up studies. International Journal of Hydrogen Energy, v. 48, n. 60, p. 22865-22874, 2023. https://doi.org/10.1016/j.ijhydene.2022.11.281

ZAIDI, A. A.; KHAN, S. Z.; ALMOHAMADI, H.; REHAN, M.; QYYUM, M. A. Co-production and enhancement of biogas and biohydrogen by optimizing NaOH-urea pretreatment conditions for kitchen waste. Process Safety and Environmental Protection, v. 190, p. 902-912, 2024. https://doi.org/10.1016/j.psep.2024.05.140

Downloads

Publicado

2025-03-07

Edição

Seção

Engenharia Agrícola / Agricultural Engineering

Como Citar

BIOHYDROGEN AS A RENEWABLE ENERGY SOURCE: PRODUCTION TECHNOLOGIES, FEEDSTOCK EFFICIENCY, AND APPLICATIONS IN AGRICULTURE. (2025). Nativa, 13(1), 46-54. https://doi.org/10.31413/nat.v13i1.18680