APPLICATIONS OF EARTH REMOTE SENSING FOR NATURAL RESOURCE MONITORING IN UKRAINE

Autores

  • Yevhen Kryvokhyzha ye.kryvokhyzha@ukr.net
    Department of Agrobiotechnology, West Ukrainian National University, Ternopil, Ukraine. https://orcid.org/0000-0001-7270-6529
  • Mykola Kutia m.kutia@bangorac.uk
    Bangor College China, Bangor University, Changsha, Hunan Province, China. https://orcid.org/0000-0001-9996-2653
  • Yurii Khmelianchyshyn hmelya75@ukr.net
    Department of Crop Production, Selection and Seed Production, Faculty of Agrotechnology and Nature Management, Podillia State University, Khmelnytskyi, Ukraine. https://orcid.org/0000-0003-2860-2065
  • Oleh Hrytsyk uhbwbrktu@ukr.net
    Department of Geography, Geodesy, and Land Management, Faculty of Natural Education and Environmental Management, Pavlo Tychyna Uman State Pedagogical University, Uman, Ukraine. https://orcid.org/0009-0009-1010-1829
  • Volodymyr Hlevaskiy volodymyr.glevaskyi@btsau.edu.ua
    Department of Genetics of Breeding and Seed Production, Agrobiotechnological Faculty, Bila Tserkva National Agrarian University, Bila Tserkva, Ukraine. https://orcid.org/0000-0002-3939-7215

DOI:

https://doi.org/10.31413/nat.v12i4.18355


Palavras-chave:

environmental monitoring, geoinformation systems, natural resource conservation, spatial analysis

Resumo

ABSTRACT: In this paper, the Ukrainian experience of using satellite data for natural resources monitoring, management and preservation from the academic and purely practical perspective was studied using an integrative literature review with elements of scoping review according to PRISMA guidelines. The results of the review indicate that the most widely used Earth Remote Sensing (ERS) methods include the application of the information from Landsat and Sentinel satellites, mainly because of their advantages in terms of the cost, period able to be studied, appropriate resolution, and adequate number of spectral channels to enable a large array of possible studies. Ukrainian scientists use satellite images to monitor changes and condition of the landscape and waters to obtain information about the amount of damaged landscape, the condition of the agricultural lands, and the condition of the different types of land for prediction of the deteriorative processes and potential sources of dangerous situations, as well as study origin, history, characteristics of the water resources and provide more precise picture using machine processing software (mostly Google Earth Engine and ArcGIS) with build-in machine algorithms to extracted Normalized Difference Vegetation Index, Modified Normalized Difference Water Index, and Normalized Difference Built-Up Index. The most widely used ERS methods include the application of the information from Landsat and Sentinel satellites, mainly because of their advantages in terms of the cost (free access to their databases), period able to be studied (from 1972 to present), appropriate resolution (10m/pixel to 120 m/pixel), and adequate number of spectral channels to enable a large array of possible studies.

Keywords: environmental monitoring; geoinformation systems; natural resource conservation; spatial analysis.

 

Aplicação do sensoriamento remoto da terra para monitoramento de recursos naturais na Ucrânia

 

RESUMO: Neste artigo, a experiência ucraniana de utilização de dados de satélite para monitoramento, gestão e preservação de recursos naturais a partir de uma perspectiva acadêmica e puramente prática foi estudada usando a revisão integrativa da literatura com elementos de revisão de escopo de acordo com as diretrizes PRISMA. Os resultados da revisão indicam que os métodos ERS mais utilizados incluem a aplicação da informação dos satélites Landsat e Sentinel, principalmente pelas suas vantagens em termos de custo, intervalo de tempo a ser estudado, resolução apropriada e número adequado de canais espectrais para permitir uma grande variedade de estudos. Os cientistas ucranianos utilizam imagens de satélite para monitorizar as mudanças e as condições da paisagem e das águas, a fim de obter informações sobre a quantidade de paisagem danificada devido a atividades mineiras ilegais (especialmente no que diz respeito à mineração de âmbar), condição das terras agrícolas, por exemplo, como produtividade das culturas no aspecto espacial e temporal, condição dos diferentes tipos de terras para previsão dos processos deteriorativos e fontes potenciais de situações perigosas; bem como estudos da origem, história, características do recursos hídricos. Em gerla, os estudos usam de processamento de máquina (principalmente Google Earth Engine e ArcGIS) com algoritmos de máquina integrados para extrair o Índice de Vegetação por Diferença Normalizada, o Índice de Água por Diferença Normalizada Modificado e o Índice de Construção por Diferença Normalizada. Os métodos ERS mais utilizados incluem a aplicação das informações dos satélites Landsat e Sentinel, principalmente devido às suas vantagens em termos de custo (acesso gratuito às suas bases de dados), intervalo de tempo passível de estudo (de 1972 até ao presente), resolução adequada (10m/pixel a 120 M/pixel) e número adequado de canais espectrais para permitir uma grande variedade de estudos possíveis.

Palavras-chave: monitoramento ambiental; sistemas de geoinformação; conservação de recursos naturais; análise espacial.

Referências

ALEKSIYCHUK, M. Assessment of Lake Velyke eutrophication by remote sensing methods. Problems of Chemistry and Sustainable Development, v. 2, p. 83-88, 2023. https://doi.org/10.32782/pcsd-2023-1-10

ANDRIEIEV, S.; ZHILIN, V. Methods of construction of hydrological cartographic models according to remote sensing of the Earth data. Advanced Information Systems, v. 4, n. 3, p. 22-40, 2020. https://doi.org/ 10.20998/2522-9052.2020.3.04

ANDRIMONT, R.; VERHEGGHEN, A.; MERONI, M.; LEMOINE, G.; STROBL, P. et al. LUCAS Copernicus 2018: Earth-observation-relevant in situ data on land cover and use throughout the European Union. Earth System Science Data, v. 13, p. 1119-1133, 2019. https://doi.org/10.5194/essd-13-1119-2021

APOSTOLOV, O. A.; YELISTRATOVA, L. O.; ROMANCHUK, I. F.; CHEKNII, V. M. Assessment of desertification areas in Ukraine by estimation of water indexes using remote sensing data. Ukrainian Geographical Journal, v. 1, p. 16-25, 2020. https://doi.org/10.15407/ugz2020.01.016

BANDURKA, O.; SVYNCHUK, O. Method of identification of space images for forecasting forest fires. Control, Navigation and Communication Systems, v.1, n. 67, p. 13-18, 2020. https:// doi.org/0.26906/SUNZ.2022.1.013

BASHTOVYI, M. G.; SKLIAR, V. G.; KYRYLCHUK, K. S.; SKLIAR, Y. L. Botanical geomonitoring of the vegetation cover in the recreation zones of the ecotourism object. Bulletin of Sumy National Agrarian University, Livestock series, v.1-2, n. 36-37, p. 1-12, 2019. https://doi.org/10.32845/agrobio.2019.4.8

BLACK, M. Prospecting the World: Landsat and the Search for Minerals in Space Age Globalization. Journal of American History, v. 106, n. 1, p. 97-120, 2019. https://doi.org/10.1093/jahist/jaz169

BORTSOVA, M.; BEREZINA, S.; KOZLOVA, O. A method for selecting an optimal datasource of earth remote sensing. Information Processing Systems, v. 4, n. 175, p. 16-27, 2023. https://doi.org/10.30748/soi.2023.175.02

DAVYBIDA, L. Analysis of capabilities and experience of using Google Earth Engine platform for environmental monitoring challenges. Environmental safety and balanced use of resources, n. 2, p. 75-86, 2021. https://doi.org/ 10.31471/2415-3184-2021-2(24)-75-86

DOMARATSKYI, Y.; PICHURA, V.; POTRAVKA, L. The use of remote sensing to research the vegetative development of the sunflower hybrids under different climatic conditions of the Steppe zone. Ekologichni Nauky, v. 2, n. 47, p. 196-205, 2023. https://doi.org/10.32846/2306-9716/2023.eco.2-47.32

DONLON, C. J.; CULLEN, R.; GIULICCHI, L.; VUILLEUNMIER, P.; FRANCIS, C. R. et al. The Copernicus Sentinel-6 mission: Enhanced continuity of satellite sea level measurements from space. Remote Sensing of Environment, v. 258, n. 1, p. 112-395, 2021. https://doi.org/10.1016/j.rse.2021.112395

DREBOT, O.; ZUBOVA, O.; LUKIANENKO, O.; CHERNIAK, YA.; SAVCHUK, O. Usage of the earth remote sensing data for the assessment of surface water area dynamics on the basis of Iziaslav district of Khmelnytsky region, Ukraine. Geodesy, Cartography and Aerial Photography, v. 91, p. 51-58, 2020. https://doi.org/10.23939/istcgcap2020.91.051

FERNANDEZ, M.; PETER, H.; ARNOLD, D.; DUAN, B.; SIMONS, W. Copernicus Sentinel–1 POD reprocessing campaign. Advances in Space Research, v. 70, p. 249-267, 2021. https://doi.org/10.1016/j.asr.2022.04.036

FESYUK, V.; MOROZ, I.; FEDONYUK, M.; MELNYK, O.; POLYANSKYI, S. Methodology and practical implementation of research of changes in forest coverage of Volyn region using remote sensing. Visnyk of V. N. Karazin Kharkiv National University, Series Geology, Geography, Ecology, v. 58, p. 274-289, 2023. https://doi.org/10.26565/2410-7360-2023-58-21

GAO, W.; SHENGWEI, Z.; RAO, X.; RUISHEN, L. Landsat TM/OLI-Based ecological and environmental quality survey of Yellow River Basin, Inner Mongolia Section. Remote Sens., v. 13, n. 21, p. 44-77, 2021. https://doi.org/10.3390/rs13214477

HARBAR, O. V.; VESELKA, E. V.; KHOMYAK, I. V.; HARBAR, D. A. Spatial and temporal changes in the land cover structure of the Sloveczanskо-Ovruchsky Ridge. Ukrainian Journal of Natural Sciences, v. 7, p. 197-209, 2024. https://doi.org/10.32782/naturaljournal.7.2024.22

HLOTOV, V.; BIALA, M. Spatial-temporal geodynamics monitoring of land use and land cover changes in Stebnyk, Ukraine based on earth remote sensing data. Geodynamics, v. 1, n. 32, p. 5-15, 2022. https://doi.org/10.23939/jgd2022.02.005

HRUZEVSKYI, O. A systematic analysis of the impact of the military conflict on the distance education system in Ukraine. E-Learning Innovations Journal, v. 1, p. 71-87, 2023. https://doi.org/10.57125/ELIJ.2023.03.25.04

KACHANOVSKYI, O. I. Identification method of broken lands because of amber production by using multispectral satellite images Landsat. Academic Notes of TNU Named After V.I. Vernadskyi. Series: Technical Sciences, v. 30, n. 1, p. 153-159, 2020. https://doi.org/10.32838/2663-5941/2020.1-2/28

KAVATS, Y. V. Information technology for deciphering anthropogenic changes in satellite images. System technologies, v. 5, n. 124, p. 77-83, 2019. https://doi.org/10.34185/1562-9945-5-124-2019-07

KRYVOSHEIN, V. Transformation of political perceptions in the age of information technologies: analyzing the impact on political beliefs. Futurity of Social Sciences, v. 1, n. 3, p. 20-32, 2023. https://doi.org/10.57125/FS.2023.09.20.02

KUBRAYKOV, A. A.; KUDRYAVTSEV, V. N.; STANICHNY, S. V. Application of Landsat imagery for the investigation of wave breaking. Remote Sensing of Environment, v. 253, p. 112-144, 2021. https://doi.org/10.1016/j.rse.2020.112144

LAKYDA, P.; LOVYNSKA, V.; BUCHAVY, Y. Comparative analysis of the aboveground phytomass assessment of pine forest stands by ground and remote methods. Proceedings of the Forestry Academy of Sciences of Ukraine, v. 21, p. 117-125, 2020. https://doi.org/10.15421/412032

LANDIN, V. P.; KUCHMA, T. L.; GURELYA, V. V.; ZAKHARCHUK, V. A.; SOLOMKO, V. L.; FESHCHENKO, V. P. Assessment of the sanitary state of forest plantations according to remote sensing data. Agroecological Journal, v. 4, p. 76-86, 2020. https://doi.org/10.33730/2077-4893.4.2020.219453

LE TRAON, P. Y.; REPUCCI, A.; FANJUL, E. A.; AOUF, L.; BEHRENS, A. et al. From observation to information and users: the Copernicus Marine Service perspective. Frontiers in Marine Science, v. 6, e234, 2019. https://doi.org/10.3389/fmars.2019.00234

LISHCHENKO, L. P.; SHEVCHUK, R. M.; FILIPOVYCH, V, YE. The technique for satellite monitoring of peatlands in order to determinate their fire hazard and combustion risks. Ukrainian Journal of Remote Sensing, v. 9, n. 1, p. 16-25, 2022. https://doi.org/ 10.36023/ujrs.2022.9.1.210

LYALKO, V. I.; DUGIN, S. S.; SYBIRTSEVA, O. M.; DOROFEY, Y. M.; GOLUBOV, S. I.; ORLENKO, T. A. On the possibility of identifying peatland features using remote sensing data. Geologìčnij Žurnal, v. 4, p. 61-78, 2023. https://doi.org/10.30836/igs.1025-6814.2023.4.288929

LYALKO, V. I.; POPOV, M. O.; SELDEROVA, O. V.; FEDOROVSKY, O. D.; STANKEVICH, S. A. et al. On the development of remote sensing methods and technologies in Ukraine. Ukrainian Journal of Remote Sensing, v. 9, n. 2, p. 43-53, 2022. https://doi.org/10.36023/ujrs.2022.9.2.214

MARAIEVA, U. On the formation of a new information worldview of the future (literature review). Futurity Philosophy, v. 1, n. 1, p. 18-30, 2022. https://doi.org/10.57125/FP.2022.03.30.02

MAZUR, N.; TKACHUK, V.; SULIMA, N.; SEMENETS, I.; NIKOLASHYN, A.; ZAHORODNIA, A. Foreign agricultural markets: state and challenges in sustainable development. In: ALAREENI, B.; HAMDAN, A. (Eds.). Innovation of Businesses and Digitalization during Covid-19 Pandemic. ICBT 2021. Lecture Notes in Networks and Systems. Springer, Cham, 2023. p. 545–559. https://doi.org/10.1007/978-3-031-08090-6_35

MYRONIUK, V. Mapping tree species composition of forest stands using Landsat seasonal mosaics and sample-based forest inventory. Proceedings of the Forestry Academy of Sciences of Ukraine, v. 19, p. 135-143, 2019. https://doi.org/10.15421/411935

MYRONIUK, V. Predicting forest stand parameters using the k-NN approach. Ukrainian Journal of Forest and Wood Science, v. 10, n. 2, p. 51-63, 2019. https://doi.org/10.31548/forest2019.02.051

OMELYANENKO, V.; HUTS, N.; MELNYK, L. Space law in Ukraine: current status and future development. Futurity Economics & Law, v. 2, n. 2, p. 41-50, 2022. https://doi.org/10.57125/FEL.2022.06.25.05

PASHCHENKO, R.; MARIUSHKO, M. Method monitoring of agricultural earth and cultures with the use of fractal analysis of earth remote sensing data. Control, Navigation and Communication Systems, v. 2, p. 5-14, 2023. https://doi.org/10.26906/SUNZ.2023.2.005

PEUCH, V. H.; ENGELEN, R.; RIXEN, M.; DEE, D.; FLEMMIMG, J. et al. The Copernicus Atmosphere Monitoring Service: from research to operations. American Meteorological Society, p. 2650-2668, set./out. 2022. DOI: https://doi.org/10.1175/BAMS-D-21-0314.1

PHIRI, D.; SIMWANDA, M.; SALEKIN, S.; NYIRENDA, V. R.; MURAYAMA, Y.; RANAGALAGE, M. Sentinel-2 data for land cover/use mapping: a review. Remote Sensing, v. 12, n. 14, e2291, 2020. https://doi.org/10.3390/rs12142291

POPOV, M. O. Remote sensing of the Earth in solving geo-ecological problems of Ukraine: current state and prospects: transcript of the report at the meeting of the Presidium of the National Academy of Sciences of Ukraine on May 15, 2024. Visnyk of the National Academy of Sciences of Ukraine, n. 7, p. 43-50, 2024. https://doi.org/10.15407/visn2024.07.043

POTAPOV, P.; HANSEN, M. C.; KOMMAREDDY, I.; KOMMAREDDY, A.; TURUBANOVA, S.; PICKENS, A.; ADUSEI, B.; TYUKAVINA, A.; YING, Q. Landsat analysis ready data for global land cover and land cover change mapping. Remote Sensing, v. 12, n. 3, e426, 2020. https://doi.org/10.3390/rs12030426

POUR, A. B.; HASHIM, M.; HONG, J. K.; PARK, Y. Lithological and alteration mineral mapping in poorly exposed lithologies using Landsat-8 and ASTER satellite data: north-eastern Graham Land, Antarctic Peninsula. Ore Geology Reviews, v. 108, p. 112-133, 2019. https://doi.org/10.1016/j.oregeorev.2017.07.018

REN, L. Assessment of changes in the quality of the environment in the Lviv region on the basis of environmental indices of remote sensing. Urban Planning and Territorial Planning, v. 84, p. 132-144, 2023. https://doi.org/10.32347/2076-815x.2023.84.132-144

REN, L. Study of changes in land cover categories in Ukraine based on remote sensing data. Scientific and Industrial Journal "Land Management, Cadastre and Land Monitoring", n. 1, p. 127-139, 2023. http://dx.doi.org/10.31548/zemleustriy2023.01.12

SAKHNO, Y.; SHCHERBAK, YU.; KOVALENKO, S.; CHRISTODOULOPOULOS, A. Integration of systems for determining the coordinates of objects and definition of remote earth sensing pictures. Technical Sciences and Technologies, v. 35, n. 1, p. 329-336, 2024. https://doi.org/10.25140/2411-5363-2024-1(35)-329-336

SHVAIKO, V.; BANDURKA, O.; DATSYUK, O.; GOLOVA, O.; KOVALCHUK, O. Analysis of images of forest plantations. Modern Problems of Modeling, v. 21, p. 183-190, 2021. https://doi.org/10.33842/22195203/2021/21/183/190

SHEVCHUK, R. M. Monitoring of Myliatyn granular phosphorite quarry current state using remote sensing data. Geological Journal, v. 2, n. 367, p. 73-78, 2019. https://doi.org/10.30836/igs.1025-6814.2019.2.169937

SHEVCHUK, S. A.; VYSHNEVSKYI, V. I.; CHAVCHENKO, I. A.; KOZYTSKYI, O. M. Research of water objects of Ukraine using the data of remote sensing of the Earth. Land Reclamation and Water Management, v. 2, p. 146-156, 2019. https://doi.org/rn.3rn73/mivg201902-198

STRUGAREK, D.; SOSNICA, K.; ARNOLD, D.; JAGGI, A.; ZAJDEL, R. et al. Determination of global geodetic parameters using satellite laser ranging measurements to Sentinel-3 satellites. Remote Sensing, v. 11, n. 19, e2282, 2019. https://doi.org/10.3390/rs11192282

TASUMI, M. Estimating evapotranspiration using METRIC model and Landsat data for better understanding of regional hydrology in the western Urmia Lake Basin. Agricultural Water Management, v. 226, p. 105-805, 2019. https://doi.org/10.1016/j.agwat.2019.105805

TROFYMCHUK, O.; ZAHORODNIA, S.; VISHNYAKOV, V.; SHEVIAKINA, N.; RADCHIK, I.; TOMCHENKO, O.; SLASTIN, S. Space monitoring of violation of the ecosystem condition of the black sea biosphere reserve as a result of military actions. Environmental Safety and Natural Resources, v. 47, n. 3, p. 94-112, 2023. https://doi.org/10.32347/2411-4049.2023.3.94-112

WULDER, M.; LOVELAND, T. R.; ROY, P. D.; CRAWFORD, C. J.; MASEK, J. G. et al. Current status of Landsat program, science, and applications. Remote Sensing of Environment, v. 255, p. 127-143, 2019. https://doi.org/10.1016/j.rse.2019.02.015

WULDER, M.; ROY, P. D.; RSDELOFF, V. C.; LOVELAND, T. R.; ANDERSON, M. C. et al. Fifty years of Landsat science and impacts. Remote Sensing of Environment, v. 280, p. 113-195, 2022. https://doi.org/10.1016/j.rse.2022.113195

ZAIACHKIVSKA, B.; PALIY, A. Remote monitoring of lands, soil cover of which is disturbed as a result of arbitrary amber mining. Scientific and Industrial Journal "Land Management, Cadastre and Land Monitoring", n. 2, e012, 2024. http://dx.doi.org/10.31548/zemleustriy2024.02.012

ZIBTSEV, O.; SOSHENSKYI, O.; MYRONIUK, V.; GUMENIUK, V. Landscape fire monitoring in the Ukrainian part of the Olmany-Perebrody transboundary Ramsar site based on remote sensing data. Forestry and Forest Melioration, v. 134, p. 88-95, 2019. https://doi.org/10.33220/1026-3365.134.2019.88

Downloads

Publicado

2024-12-03

Edição

Seção

Ciências Ambientais / Environmental Sciences

Como Citar

APPLICATIONS OF EARTH REMOTE SENSING FOR NATURAL RESOURCE MONITORING IN UKRAINE. (2024). Nativa, 12(4), 744-754. https://doi.org/10.31413/nat.v12i4.18355