STRATEGIES FOR CONTROL OF NITROGENATED COMPOUND CONCENTRATIONS IN THE Penaeus paulensis BFT CULTURE SYSTEM

Autores

  • Esthefany Caroline França-Silva esthefanycfs@gmail.com
    Aquaculture Center, São Paulo State University (UNESP), Jaboticabal, SP, Brazil. https://orcid.org/0000-0002-7926-9269
  • Suelen Aparecida Paula Andrade supaulaa@gmail.com
    Department of Fisheries Resources and Aquaculture, São Paulo State University, Registro, SP, Brazil. https://orcid.org/0000-0002-4602-904X
  • Hothon Trioni hothon.trioni@adm.com
    Goiana Agency for Technical Assistance, Rural Extension and Agricultural Research, Goiânia, GO, Brazil. https://orcid.org/0000-0001-9958-1009
  • Giovana Bertini giovana.bertini@unesp.br
    Department of Fisheries Resources and Aquaculture, São Paulo State University, Registro, SP, Brazil. / Laboratory of Biology and Culture of Crustaceans, São Paulo State University, Registro, SP, Brazil. https://orcid.org/0000-0003-4489-0351
  • Guilherme Wolff Bueno guilherme.wolff@unesp.br
    Aquaculture Center, São Paulo State University (UNESP), Jaboticabal, SP, Brazil. / Department of Fisheries Resources and Aquaculture, São Paulo State University, Registro, SP, Brazil. https://orcid.org/0000-0002-1160-020X
  • Carlos Augusto Prata Gaona capgaona@gmail.com
    Department of Fisheries Resources and Aquaculture, São Paulo State University, Registro, SP, Brazil. / Graduate Program in Biomaterials and Bioprocess Engineering, São Paulo State University, Araraquara, SP, Brazil. https://orcid.org/0000-0003-4638-9018

DOI:

https://doi.org/10.31413/nat.v13i1.18187


Palavras-chave:

Aquaculture, Shrimp Farming, Water Quality, Nitrification, Nitrite

Resumo

The present study is of practical significance as it aimed to analyze the reduction of nitrite through two management strategies, potentially leading to a proposal for controlling this compound and improving water quality in the BFT system. The study focused on achieving an optimal organic carbon-to-alkalinity ratio and an optimal feed rate in the rearing of P. paulensis. Two experiments were conducted. While the study did not conclusively develop a tool for nitrite reduction by oxidizing nitrite bacteria, it did find that higher alkalinities promote the action of ammonia-oxidizing bacteria, creating a more conducive environment for biofloc development and improved water quality control. In a study aimed at determining the optimal feed rate, it was observed that higher feed reductions (30%) enhanced the activity of nitrite-oxidizing bacteria, thereby accelerating the nitrification process and potentially revolutionizing shrimp farming practices.

Keywords: aquaculture; shrimp farming; water quality; nitrification; nitrite.

 

Estratégias para controle das concentrações de compostos nitrogenados no cultivo de Penaeus paulensis em sistema de bioflocos

 

RESUMO: O presente estudo tem significativa relevância prática, pois teve como objetivo analisar a redução de nitrito por meio de duas estratégias de manejo, potencialmente levando à proposição de um método para o controle desse composto e melhoria da qualidade da água no sistema BFT. O estudo focou na obtenção de uma relação ideal entre carbono orgânico e alcalinidade, bem como em uma melhor taxa de alimentação no cultivo de P. paulensis. Dois experimentos foram conduzidos. Embora o estudo não tenha alcançado conclusivamente uma ferramenta para a redução de nitrito por bactérias oxidantes de nitrito, observou-se que maiores níveis de alcalinidade favorecem a ação de bactérias oxidantes de amônia, criando um ambiente mais propício para o desenvolvimento do biofloco e o controle da qualidade da água. No experimento que visava determinar a melhor taxa de alimentação, verificou-se que maiores reduções na alimentação (30%) potencializam a ação das bactérias oxidantes de nitrito, acelerando o processo de nitrificação e possivelmente revolucionando as práticas de cultivo de camarão.

Palavras-chave: aquicultura; carcicinicultura; qualidade de água; nitrificação; nitrito.

 

Referências

APHA_AMERCIAN PUBLIC HEATH ASSOCIATION. Standard Methods for the Examination of Water and Wastewater, 21ed. Washington, DC: American Public Health Association (APHA), 2005. 1100p.

AVNIMELECH, Y. Biofloc technology - A Pratical Guidebook. 3 ed. Baton Rouge, Louisiana, USA: World Aquaculture Society, 2014. 258p.

BALLESTER, E. L. C.; ABREU, P. C.; CAVALLI, R. O.; EMERENCIANO, M.; ABREU, L.; WASIELESKY, W. J. Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquaculture Nutrition, v. 16, p. 163-172, 2010. https://doi.org/10.1111/j.1365-2095.2009.00648.x

BENDSCHNEIDER, K.; ROBINSON, R. J. A new spectrophotometric method for the determination of nitrite in seawater. Journal of Marine Research, v. 11, p. 87-96, 1952.

BRANDÃO, H.; XAVIER, Í. V.; SANTANA, G. K. K.; SANTANA, H. J. K.; KRUMMENAUER, D.; WASIELESKY, W. Heterotrophic versus mixed BFT system: Impacts on water use, suspended solids production and growth performance of Litopenaeus vannamei. Aquacultural Engineering, v. 95, e102194, 2021. https://doi.org/10.1016/j.aquaeng.2021.102194

BRANDÃO, H.; REIS, W. G.; KRUMMENAUER, D.; WASIELESKY JR, W. Growth performance of Litopenaeus vannamei under biofloc system using denitrified seawater. Aquaculture International, v. 32, n. 3, p. 3129-3145, 2024. https://doi.org/10.1007/s10499-023-01315-0

CHEN, C.; WANG, F.; REN, Z.; WANG, X.; SHAN, H. Influencing factors on nitrite removal by bagasse bioflocs and the succession of attached microbial communities. Journal of Water Process Engineering, v. 59, 105057, 2024. https://doi.org/10.1016/j.jwpe.2024.105057.

CHEN, S.; LI, L.; DONG. X.; TIAN, X. Influence of carbon source supplementation on the development of autotrophic nitrification and microbial community composition in biofloc technology systems. Journal of Water Process Engineering, v. 71, e107215, 2025. https://doi.org/10.1016/j.jwpe.2025.107215

D'INCAO, F.; VALENTINI, H. E.; RODRIGUES, L. F. Avaliação da pesca de camarões nas regiões sudeste e sul do Brasil. Atlântica, v. 24, n. 2, P. 103-116, 2002.

EBELING, J. M.; TIMMONS, M. B.; BISOGNI, J. J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic control of ammonia-nitrogen in aquaculture production systems. Aquaculture, v. 257, p. 386-358, 2006. https://doi.org/10.1016/j.aquaculture.2006.03.019

FERREIRA, G. S.; SILVA, V. F.; MARTINS, M. A.; SILVA, A. C. C. P.; MACHADO, C.; SEIFFERT, W. Q.; VIEIRA, F. N. Strategies for ammonium and nitrite control in Litopenaeus vannamei nursery systems with bioflocs. Aquacultural Engineering, v. 88, e102040, 2020. https://doi.org/10.1016/j.aquaeng.2019.102040

FURTADO, P. S.; POERSCH, L. H.; WASIELESKY, W. J. The effect of different alkalinity levels on Litopenaeus vannamei reared with biofloc technology (BFT). Aquaculture International, v. 22, p. 1009-1023, 2014. https://doi.org/10.1007/s10499-014-9819-x

GAONA, C. A. P.; ALMEIDA, M. S.; VIAU, V.; POERSCH, L. H.; WASIELESKY, W. J. Effect of different total suspended solids levels on a Litopenaeus vannamei (Boone, 1931) BFT culture system during biofloc formation. Aquaculture Research, v. 48, n. 3, p. 1070-1079, 2015. https://doi.org/10.1111/are.12949

GROSS, A.; ABUTBUL, S.; ZILBERG, D. Acute and chronic effects of nitrite on white shrimp, Litopenaeus vannamei, cultured in low-salinity brackish water. Journal of the World Aquaculture Society, v. 35, n. 3, p. 315-321, 2004. https://doi.org/10.1111/j.1749-7345.2004.tb00095.x

HARGREAVES, J. A. Nitrogen biogeochemistry of aquaculture ponds. Aquaculture, v. 166, n. 3-4, p. 181-212, 1998. https://doi.org/10.1016/S0044-8486(98)00298-1

HENRIQUES, M. B.; ALVES, P. M. F.; BARRETO, O. J. S.; SOUZA, M. R. Growth of Litopenaeus schmitti(Burkenroad, 1936) and Farfantepenaeus paulensis(Pérez-farfante, 1967) shrimp reared in recirculation culture system. Brazilian Journal of Oceanography, v. 62, n. 4, p. 323-330, 2014. https://doi.org/10.1590/S1679-87592014078806204

IWAI, M. Pesca exploratória e estudo biológico sobre camarão na costa centro-sul do Brasil com o navio oceanográfico "Prof. W. Besnard" em 1969-1971. São Paulo: SUDELPA, Instituto Oceanográfico USP, 1973, 71p.

JORY, D. E.; CABRERA, T. R.; DUGGER, D. M.; FEGAN, D.; LEE, P. G.; LAWRENCE, A. L.; JACKSON, C. J.; MCINTOSH, R. P.; CASTAÑEDA, J. A global review of shrimp feed management: status and perspectives. The World Aquaculture Society, p. 104-152, 2001.

LARA, G.; POERSCH, L.H.; WASIELESKY, W. The quantity of artificial substrates influences the nitrogen cycle in the biofloc culture system of Litopenaeus vannamei. Aquacultural Engineering, v. 94, e102171, 2021. https://doi.org/10.1016/j.aquaeng.2021.102171

MACHADO, I. C.; MENDONÇA, J. T. Gestão pesqueira participativa do Complexo Estuarino-lagunar de Cananéia, Iguape e Ilha Comprida e Área Costeira Adjacente. In: PRATES, A. P.; BLANC, D. (Orgs). Áreas aquáticas protegidas como instrumento de gestão pesqueira. Brasília-DF: MMA/SBF, 2007. p. 79-98. (Série Áreas Protegidas do Brasil, 4)

MELO FILHO, M. E. S.; OWATARI, M. S.; MOURIÑO, J. L. P.; LAPA, K. R.; SOARES, H. M. Application of nitrification and denitrification processes in a direct water reuse system for pacific white shrimp farmed in biofloc system. Aquaculture Engineering, v. 88, e102043, 2020. https://doi.org/10.1016/j.aquaeng.2020.102043

OSTRENSKY, A.; WASIELESKY, W. JR. Acute toxicity of ammonia to various life stages of the São Paulo shrimp, Penaeu spaulensis Pérez-Farfante, 1967. Aquaculture, v. 132, n. 3-4, p. 339-347, 1995. https://doi.org/10.1016/0044-8486(94)00343-M.

PIMENTEL, O. A. L. F.; OLIVEIRA, V. Q. de; OLIVEIRA, C. R. do R.; SANTOS, E. P. dos; SEVERI, 2.; PASCO, J. M.; EMERENCIANO, M. G. C.;

GÁLVEZ, A. O.; BRITO, L. O. Nitrogenous compounds and alkalinity patterns in Penaeus vannamei nurseries and pre-grow-out with low salinity water and synbiotic system: a case study. Aquaculture International, v. 32, n. 2, p. 1703-1718, 2024. https://doi.org/10.1007/s10499-023-01237-x

PIMENTEL, O. A. L. F.; SCHWARZ, M. H.; VAN SENTEN, J.; WASIELESKY, W.; URICK, S.; CARVALHO, A.; MCALHANEY, E.; CLARINGTON, J.; KRUMMENAUER, D. The super-intensive culture of Penaeus vannamei in low salinity water: A comparative study among recirculating aquaculture system, biofloc, and synbiotic systems. Aquaculture, v. 596, e741774, 2025. 10.1016/j.aquaculture.2024.741774

RAMIRO, B. O.; WASIELESKY JR, W.; PIMENTEL, O. A. L. F.; SAN MARTIN, N. P.; BORGES, L. do V.; KRUMMENAUER, D. Different management strategies for artificial substrates on nitrification, microbial composition, and growth of Penaeus vannamei in a super-intensive biofloc system. Aquaculture, v. 596, e741853, 2025. 10.1016/j.aquaculture.2024.741853

ROBLES‐PORCHAS, G. R.; GOLLAS‐GALVÁN, T.; MARTÍNEZ‐PORCHAS, M.; MARTÍNEZ‐CORDOVA, L. R.; MIRANDA‐BAEZA, A.; VARGAS‐ALBORES, F. The nitrification process for nitrogen removal in biofloc system aquaculture. Reviews in Aquaculture, v. 12, n. 4, p. 2228-2249, 2020. https://doi.org/10.1111/raq.12431

SERRA, F. P.; GAONA, C. A. P.; FURTADO, P. S.; POERSCH, L. H.; WASIELESKY, W. J. Use of different carbon sources for the biofloc system adopted during the nursery and grow-out culture of Litopenaeus vannamei. Aquaculture International, v. 23, p. 1325-1339, 2015. https://doi.org/10.1007/s10499-015-9887-6

SEVERINO-RODRIGUES, E.; GUERRA, D. S.; GRAÇA-LOPES, R. Carcinofauna acompanhante da pesca dirigida ao camarãosete-barbas (Xiphopenaeuskroyeri) desembarcada na Praia do Perequê, Estado de São Paulo, Brasil. Boletim do Instituto de Pesca, v. 28, n. 1, p. 33-48, 2002.

UNESCO. Chemical Methods for Use in Marine Environmental Monitoring. Manual and Guides 12, Intergovernmental Oceanographic Commission, Paris, France, 1983. 53p.

VALENCIA-CASTAÑEDA, G.; FRÍAS-ESPERICUETA, M. G.; VANEGAS-PÉREZ, R. C.; PÉREZ-RAMÍREZ, J. A.; CHÁVEZ-SÁNCHEZ, M. C.; PÁEZ-OSUNA, F. Acute toxicity of ammonia, nitrite and nitrate to shrimp Litopenaeus vannamei postlarvae in low-salinity water. Bulletin of Environmental Contamination and Toxicology, v. 101, p. 229-234, 2018. https://doi.org/10.1007/s00128-018-2355-z

VINATEA, L.; GALVEZ, A. O.; BROWDY, C. L.; STOKES, A.; VENERO, J.; HAVEMAN, J.; LEWIS, B. L.; LAWSON, A.; SHULER, A.; LEFFLER, J. W. Photosynthesis, water respiration and growth performance of Litopenaeus vannamei in a super-intensive raceway culture with zero water exchange: interaction of water quality variables. Aquacultural Engineering, v. 42, p. 17-24, 2010. https://doi.org/10.1016/j.aquaeng.2009.09.001

WASIELESKY, W. J.; POERSCH, L. H.; MARTINS, T. G.; MIRANDA-FILHO, K. C. Chronic effects of nitrogenous compounds on survival and growth of juvenile pink shrimp. Brazilian Journal of Biology, v. 77, n. 3, p. 558-565, 2016. https://doi.org/10.1590/1519-6984.1841

XAVIER, M.; WASIELESKY JÚNIOR, W.; HOSTINS, B.; BEQUÉ, E.; KRUMMENAUER, D. The use of a flocculant additive and its effect on biofloc formation, nitrification, and zootechnical performance during the culture of Pacific white shrimp Penaeus vannamei (Boone, 1931) in a BFT system. Latin American Journal of Aquatic Research, v. 50, n. 2, p. 181-196, 2022. http://dx.doi.org/10.3856/vol50-issue2-fulltext-2777

XU, W.; ZHANG, D.; SU, H.; XU, Y.; HU, X.; WEN, G.; CAO, Y. Impact of biochar addition on biofloc nitrifying bacteria and inorganic nitrogen dynamics in an intensive aquaculture system of shrimp. Microorganisms, v. 12, n. 12, e2581, 2024. https://doi.org/10.3390/microorganisms12122581

ZAR, J. H. Biostatistical analysis. 5td ed. New Jersey: Prentice Hall, 2010. 944p.

Downloads

Publicado

2025-04-11

Edição

Seção

Zootecnia / Animal Husbandry

Como Citar

STRATEGIES FOR CONTROL OF NITROGENATED COMPOUND CONCENTRATIONS IN THE Penaeus paulensis BFT CULTURE SYSTEM. (2025). Nativa, 13(1), 121-128. https://doi.org/10.31413/nat.v13i1.18187

Artigos mais lidos pelo mesmo(s) autor(es)