CHEMICAL AND MORPHOLOGICAL CHARACTERISTICS OF THE CRUSTS IN SEDIMENTARY SOILS USING A SCANNING ELECTRON MICROSCOPE

Autores

DOI:

10.31413/nat.v12i3.17938

Palavras-chave:

soil crusts, soil porosity, raindrop pressure, infiltration, water evaporation, southern Iraq

Resumo

This study aimed to characterize the formation of surface crusts of arid soil (Typical Torrifluvents) of an alluvial plain in eight locations of Basra Province, in the southern region of Iraq. The unique and intriguing morphological and chemical characteristics were studied with an exceptional level of precision using a scanning electron microscope, ensuring the reliability and accuracy of the results. The crusts were identified as structural crust, puffy crust and salt crust, with thicknesses of 1.0-3.0; 0.5-1.5; and 0.2-0.4 cm, respectively. The depositional environment, particularly the kinetic energy of rainfall, plays an active role in the formation of structural crusts. The swollen crusts occurred in different spatial locations in small hills with cores. These areas are in the form of hills with coverings resulting from the processes of capillary rise of salts and the effect of the processes of evaporation and condensation of water, which leads to an increase in the size of the salt crystal embedded in the construction of these crusts. The salt crusts appeared in interconnected layers as relatively medium-sized crystals resulting from the evaporation of salt solutions in small lakes after rainfall; in this case, they appeared as fine salt crystals in areas affected by capillary rise. The size of the crystals depends on the purity of the salt and the evaporation rate of the salt solution. Scanning Electron Microscopy (SEM) showed that the structural crusts appeared as layers between the closely packed layers of the microplate structure, and the pores were very fine or narrow. The salt crusts showed very small salt crystals, and the crystal size is affected by the purity of the salt in the brine.

Keywords: soil crusts; soil porosity; raindrop pressure; infiltration; water evaporation, southern Iraq.

 

Características químicas e morfológicas das crostas em solos sedimentares usando microscópio eletrônico de varredura

 

RESUMO: Estudo objetivou caracterizar a formação das crostas superficiais do solo árido (Torrifluventes Típicos), de uma planície aluvial em oito locais da Província de Basra, na região Sul do Iraque. As características morfológicas e químicas foram estudadas usando um microscópio eletrônico de varredura. As crostas foram identificadas como crosta estrutural, crosta fofa e crosta de sal, com espessuras de 1,0-3,0; 0,5-1,5; e 0,2-0,4 cm, respectivamente. O ambiente deposicional tem um papel ativo na formação de crostas estruturais, além do papel da energia cinética da chuva, cujo efeito é superficial nessas crostas. As crostas inchadas ocorreram em diferentes localizações espaciais, na forma de pequenas colinas com núcleos. Essas áreas estão na forma de colinas com coberturas resultantes dos processos de ascensão capilar de sais e do efeito dos processos de evaporação e condensação da água, o que leva a um aumento no tamanho do cristal de sal imbutido na construção dessas crostas. As crostas de sal apareceram em camadas interconectadas como cristais, de tamanho relativamente médio, resultantes da evaporação de soluções de sal em pequenos lagos após a chuva; nesse caso, elas apareceram como cristais finos de sal em áreas afetadas pela ascensão capilar. O tamanho dos cristais depende da pureza do sal e da velocidade de evaporação da solução de sal. A Microscopia Eletrônica de Varredura (MEV) mostrou que as crostas estruturais apareceram na forma de camadas entre as camadas compactadas da estrutura de microplacas, e os poros eram muito finos ou estreitos. As crostas de sal apresentaram cristais de sal muito pequenos, e o tamanho do cristal é afetado pela pureza do sal na salmoura.

Palavras-chave: crostas de solo; porosidade do solo; pressão das gotas de chuva; infiltração; evaporação da água, sul do Iraque.

Referências

ABBAS, S. Studying some characteristics of soils affected by salts and their deterioration in Basra Governorate using geospatial techniques. PhD thesis. College of Agriculture, University of Basra, 2020. https://www.geographytreasury.com/2023/06/blog-post_11.html

ASSOULINE S. G., COLANGELO N., VANTASSEL-BASKA J., LUPKOWSKI - SHOPLIK A. E. A nation empowered: Evidence trumps the excuses holding back America’s brightest students. The Connie Belin & Jacqueline N. Blank Center for Gifted Education and Talent Development, 2015.

ASSOULINE, S. Rainfall-Induced Soil Surface Sealing: A critical review of observations, conceptual models, and solutions. Vadose Zone Journal, v. 3, p. 570-591, 2004. https://doi.org/10.2113/3.2.57010.2136/vzj2004.0570

BAO, S. Agricultural and chemical analysis on soil. 3rd Ed. Beijing: China Agriculture Press, 2000. 428p.

BELNAP, J.; KALTENECKER, J. H.; ROSENTRETER, R.; WILLIAMS, J.; LEONARD, S.; ELDRIDGE, D. Biological soil crusts ecology and management. Denver: United States Department of the Interior Bureau of Land Management Printed Materials Distribution Center, 2001. 188p.

CHAMIZO, S.; RODRÍGUEZ-CABALLERO, E.; ROMÁN, J. R.; CANTÓN, Y. Effects of biocrust on soil erosion and organic carbon losses under natural rainfall. Catena, v. 148, p. 117-125, 2017. https://doi.org/10.1016/j.catena.2016.06.017

CHEN, L.; SELA, S.; SVORAY, T.; ASSOULINE, S. The role of soil-surface sealing, microtopography, and vegetation patches in rainfall-runoff processes in semiarid areas. Water Resources Research, v. 49, p. 5585-5599, 2013. https://doi.org/10.1002/wrcr.20360

CHONG-FENG, B. U.; GALE, W. J.; QIANG-GUO, C. A.; SHU-FANG, W. U. Process and mechanism for the development of physical crusts in three typical Chinese soils. Pedosphere, v. 23, n. 3, p. 321-332, 2013. https://doi.org/10.1016/S1002-0160(13)60023-5

GUPTA, S.; HUININK, H. P.; PRAT, M.; PEL, L.; KOPINGA, K. Paradoxical drying of a fired-clay brick due to salt crystallization. Chemical Engineering Science, v. 109, p. 204-211, 2014. https://doi.org/10.1016/j.ces. 2014.01.023

HU, X.; LIU, L.-Y.; LI, S.-J.; CAI, Q.-G.; LU, Y.-L.; GUO, J. R. Development of Soil Crusts under Simulated Rainfall and Crust Formation on a Loess Soil as Influenced by Polyacrylamide. Pedosphere, v. 22, p. 415-424, 2012. https://doi.org/10.1016/s1002-0160(12)60027-7

KAYA, A.; ÖREN, A.H.; YUKSELEN-AKSOY, Y. Setting of kaolinite in different aqueous environments. Marine Georesources Geotechnology, v. 24, n. 3, p. 203-218, 2006. https://doi.org/10.1080/10641190600788429

LAKER, C. M.; NORTJÉ, G. P. Review of existing knowledge on soil crusting in South Africa. Advances in Agronomy, v. 155, p. 189-242, 2019. https://doi.org/10.1016/bs.agron.2019.01.002

LI, X.; HUANG, M.; ZHAO, R.; ZHAO, C.; LIU, Y.; ZOU, H. INTRAVENOUSLY delivered allogeneic mesenchymal stem cells bidirectionally regulate inflammation and induce neurotrophic effects in distal middle cerebral artery occlusion rats within the first 7 days after stroke. Cellular Physiology and Biochemistry, v. 46, n. 5, p. 1951-1970, 2018. https://doi.org/10.1159/000489384

LI, Y.; SUN, Y. Modeling and predicting city-level CO2 emissions using open-access data and machine learning. Environmental Science and Pollution Research, v. 28, p. 19260-19271, 2021. https://doi.org/10.1007/s11356-020-12294-7

LICSANDRU, G.; NOIRIEL, C.; DURU, P.; GEOFFROY, S.; ABOU CHAKRA, A.; PRAT, M. Dissolution-precipitation-driven upward migration of a salt crust. Physical Review E, v. 100, n. 3, e032802, 2019. https://doi.org/10.1103/PhysRevE.100.032802

NACHSHON, U. Cropland soil salinization and associated hydrology: trends, processes, and examples. Water, v. 10, n. 8, p. 1030-1050, 2018. https://doi.org/10.3390/w10081030

NOROUZI, M.; SHOKRI, N.; SAHIMI, M. Pore-scale dynamics of salt precipitation in drying porous media. Physical Review E, v. 88, n. 3, e032404, 2013. https://doi.org/10.1103/PhysRevE.88.032404

PI, H.; HUGGINS, D. R.; SHARRATT, B. Influence of clay amendment on soil physical properties and threshold friction velocity within a disturbed crust cover in the Inland Pacific Northwest. Soil and Tillage Research, v. 202, e104659, 2020. https://doi.org/10.1016/j.still.2020.104659

VETTER, S.; SAPKOTA, T.; HILLIER J. Corrigendum to greenhouse gas emissions from agricultural food production to supply Indian diets: implications for climate change mitigation. Agriculture, Ecosystems & Environment, v. 237, p. 234-241, 2017. https://doi.org/10.1016/j.agee.2016.12.024

WEBER, B.; BELNAP, J.; BUDEL, B.; ANTONINKA , A. J.; BARGER, N. N.; CHAUDHARY, V. B. What is a biocrust? A refined, contemporary definition for a broadening research community. Biological Review, v. 97, p. 1768-1785, 2022. https://doi.org/10.1111/brv.12862

XING, H.; LIU, C.; ZHANG, Y.; ZHAO, J.; LI, C.; LIU, H.; LI, L.; WANG, X.; XIANG, W. Plantactinospora veratri sp. nov., an actinomycete isolated from black false hellebore root (Veratrum nigrum L.). International Journal of Systematic and Evolutionary Microbiology, v. 65, Pt_6, p. 1799-804, 2015. https://doi.org/10.1099/ijs.0.000180

Downloads

Publicado

2024-09-13

Como Citar

Saleh, S. M., Dheyab, A. H., & Sultan , S. M. (2024). CHEMICAL AND MORPHOLOGICAL CHARACTERISTICS OF THE CRUSTS IN SEDIMENTARY SOILS USING A SCANNING ELECTRON MICROSCOPE. Nativa, 12(3), 508–515. https://doi.org/10.31413/nat.v12i3.17938

Edição

Seção

Ciências Ambientais / Environmental Sciences