ENHANCED BIOREMEDIATION OF DIESEL OIL CONTAMINANTS IN SOIL

Autores

DOI:

10.31413/nat.v12i2.17526

Palavras-chave:

aerobic composting, organic waste, bioremediation, environmental recovery, degraded areas, environmental contamination

Resumo

Compost-bioremediation was adopted to explore the sustainability of using a biological system of microorganisms in a mature, cured compost to break down diesel oil contaminants in soil. The process involved mixing agricultural wastes, including fruitwaste, sawdust, and sheep manure. Periodic sampling from vessels was carried out at the 15-day interval for TPH analysis and the isolation and enumeration of bacteria. Organic waste and soil contaminated with diesel oil were left outdoors for 90 days for degradation. The effectiveness of composting-bioremediation processes relies on diverse microbes. Therefore, parameters such as the C/N ratio (25–30), moisture content, and aerobic conditions are crucial. Manual rotating is necessary for optimal bioremediation. The results show that the biodegradation of diesel oil in soil was 86%–89%, higher than that of control (40%). This increase in biodegradation was due to nutrients in organic waste matter soil, which enhanced the microbes' degradation capabilities. The results from chemical and toxicity assays showed the efficacy of composting treatment for hydrocarbon removal with a germination index of 88.17%., 80.67%, and 92.04%, respectively. This research is the transformation of diesel oil contaminants into less detrimental chemicals by microorganisms in organic waste mixed into the soil.

Keywords: aerobic composting; organic waste; bioremediation; environmental recovery; degraded areas; environmental contamination.

 

Biorremediação aprimorada de contaminantes de óleo diesel no solo

 

RESUMO: A biorremediação foi adotada para explorar a sustentabilidade do uso de um sistema biológico de microrganismos em um composto maduro e curado para decompor os contaminantes do óleo diesel no solo. O processo envolveu a mistura de resíduos agrícolas, incluindo resíduos de frutas, serragem e esterco de ovelha. Amostras periódicas dos vasos foram realizadas com intervalo de 15 dias para análise de TPH e isolamento e enumeração de bactérias. Os resíduos orgânicos e o solo contaminado com óleo diesel ficaram ao ar livre por 90 dias para degradação. A eficácia dos processos de compostagem-biorremediação depende de diversos microrganismos. Parâmetros como a relação C/N (25–30), teor de umidade e condições aeróbicas são cruciais, sendo necessária a rotação manual para uma biorremediação ideal. Os resultados mostram que a biodegradação do óleo diesel no solo foi de 86% a 89%, superior à do controle (40%). Este aumento na biodegradação deveu-se aos nutrientes dos resíduos orgânicos do solo, que aumentaram a capacidade de degradação dos micróbios. Os resultados dos ensaios químicos e de toxicidade mostraram a eficácia do tratamento de compostagem para remoção de hidrocarbonetos com índice de germinação de 88,17%, 80,67% e 92,04%, respectivamente. Esta pesquisa consiste na transformação de contaminantes do óleo diesel em compostos químicos menos prejudiciais, por microrganismos presentes em resíduos orgânicos misturados ao solo.

Palavras-chave: compostagem aeróbica; resíduos orgânicos; recuperação ambiental; áreas degradadas; contaminação ambiental.

 

Referências

ABENA, M. T. B.; LI, T.; SHAH, M. N.; ZHONG, W. Biodegradation of total petroleum hydrocarbons (TPH) in highly contaminated soils by natural attenuation and bioaugmentation. Chemosphere, v. 234, p. 864-874, 2019. https://doi.org/10.1016/j.chemosphere.2019.06.111

ABIOYE, O. P.; AGAMUTHU, P.; ABDUL-AZIZ, A. R.; Biodegradation of used motor oil in soil using organic Waste Amendments. Biotechnology Research International, v. 2012, e 587041, 2012. https://doi.org/10.1155/2012/587041

AHMED, W. A.; ALZUBAIDI, S. F.; HAMZA, J. S. Biodegradation of crude oil in contaminated water by local isolates of Enterobacter cloacae. Iraqi Journal of Science, v. 55, n. 3A, p. 1025-1033, 2023.

AL NUAIMI, M. T. H.; TAHER, T. A.; AL-JANABI, Z. Z.; ADEL, M. M. High-resolution GC/MS study of biodegradation of crude oil by Bacillus megaterium. Research on Crops, v. 21, n. 3, p. 650-657, 2020. https://doi.org/10.31830/2348-7542.2020.101

ALMALKI, G.; RABAH, S.; AL-FAIfi, Z.; ALHARBI, A. SHARMA, M. Phytochemistry screening, antioxidant and antimicrobial activities of Euphorbia inarticulata Schweinf plant extract. Pharmacophore, v. 13, n. 1, p. 91-99, 2022.

AL-SAEDI, Z. Z.; IBRAHIM, J. A. K. Aerobic municipal solid waste compost quality according to different layers of composting bioreactor. Journal of Engineering Sciences, v. 26, n. 3, p. 7-16, 2019. https://doi.org/10.33261/jaaru.2019.26.3.002

ANTAI, S. P.; MGBOMO, E. Distribution of hydrocarbon utilizing bacteria in oil-spill areas. Microbios Letters, v. 40, n. 159, p. 137-143, 1989.

ANTHONY, O. Biodegradation alternative in the Cleanup of petroleum hydrocarbon pollutants. Biotechnology and Molecular Biology Review, v. 1,n. 2,p. 38-50, 2006. https://doi.org/10.5897/BMBR.9000002

ATAGANA, H. I. Co‐composting of PAH‐contaminated soil with poultry manure. Letters in Applied Microbiology, v. 39, n. 2, p. 163-168, 2004. https://doi.org/10.1111/j.1472-765X.2004.01554.x

AUSMA, S.; EDWARDS, G. C.; FITZGERALD-HUBBLE, C. R.; HALFPENNY-MITCHELL, L.; GILLESPIE, T. J.; MORTIMER, W. P. Volatile hydrocarbon emissions from a diesel fuel contaminated soil bioremediation facility. Journal of the Air & Waste Management Association, v. 52, n. 7, p. 769-780, 2002. https://doi.org/10.1080/10473289.2002.10470819

BERTRAN, E.; SORT, X.; SOLIVA, M.; TRILLAS, I. Composting winery waste: sludges and grape stalks. Bioresource Technology, v. 95, p. 203-208, 2004. https://doi.org/10.1016/j.biortech.2003.07.012

BOSSERT, I.; BARTHA, R. Plant growth on soil with a history of oil sludge disposal. Soil Science, v. 140, p. 75-77, 1985.

CORNELL WASTE MANAGEMENT INSTITUTE_ Cornell University. Calculate C/N Ratio For Three Materials. Cornell University Ithaca, NY, 1996. https://compost.css.cornell.edu/calc/2.html.

ELANGO, D.; THINAKARAN, N.; PANNEERSELVAM, P.; SIVANESAN, S. Thermophilic composting of municipal solid waste. Applied Energy, v. 86, n. 5,p. 663 668, 2009. https://doi.org/10.1016/j.apenergy.2008.06.009

GIBB, A.; CHU, A.; WONG, R. C.; GOODMAN, R. Bioremediation kinetics of crude oil at 5° C. Journal of Environmental Engineering, v. 127, p. 818-824, 2001. https://doi.org/10.1061/(ASCE)0733-9372(2001)127:9(818)

GRAÇA, J.; MURPHY, B.; PENTLAVALLI, P.; ALLEN, C. C. R.; BIRD, E.; GAFFNEY, M.; DUGGAN, T. KELLEHER, B. Bacterium consortium drives compost stability and degradation of organic contaminants in in-vessel composting process of the mechanically separated organic fraction of municipal solid waste (MS-OFMSW). Bioresource Technology Reports, v. 13, e100621, 2021. https://doi.org/10.1016/j.biteb.2020.100621

HINCHEE, R. E.; FREDRICKSON, J.; ALLEMAN, M. B. C. (Eds). Bioremediation of chlorinated solvents. Columbus, OH: Battelle Press, 1995. 221p.

IJAH, U. J. J.; ANTAI, S. P. The potential use of chicken-drop microorganisms for oil spill remediation. The Environmentalist, v. 23, n. 1, p. 89-95, 2003a. https://doi.org/10.1023/A:1022947727324

IJAH, U. J. J.; ANTAI, S. P. Removal of Nigerian light crude oil in soil over 12 months. International Biodeterioration & Biodegradation, v. 51, n. 2, p. 93-99, 2003b. https://doi.org/10.1016/S0964-8305(01)00131-7

KIM, S.; CHOI, D. H.; SIM, D. S.; OH, Y. S. Evaluation of bioremediation effectiveness on crude oil-contaminated sand. Chemosphere, v. 59, n. 6, p. 845-52, 2005. https://doi.org/10.1016/j.chemosphere.2004.10.058

KAEWLAOYOONG, A.; CHENG, C. Y.; LIN, C.; CHEN, J. R.; HUANG, W. Y.; SRIPROM, P. White rot fungus Pleurotus pulmonarius enhanced bioremediation of highly PCDD/Fcontaminated field soil via solid state fermentation. Science ot The Total Environment, v. 738, e139670, 2020. https://doi.org/10.1016/j.scitotenv.2020.139670

LIN, C. A negative-pressure aeration system for composting food wastes. Bioresource Technology, v. 99, n. 16, p. 7651-7656, 2008. https://doi.org/10.1016/j.biortech.2008.01.078

LIN, C.; CHERUIYOT, N. K.; BUI, X-T.; NGO, H. H. Composting and its application in bioremediation of organic contaminants. Bioengineered, v. 13, n. 1, p. 1073-1089, 2022. https://doi.org/10.1080/21655979.2021.2017624

LIN, C. T.; CHERUIYOT, N. K.; HOANG, H. G.; HOANG, H-G.; LE, T. H.; TRAN,H. T. BUI, X. T. . Benzophenone biodegradation and characterization of malodorous gas emissions during co-composting of food waste with sawdust and mature compost. Environmental Technology & Innovation, v. 21, e101351, 2021. https://doi.org/10.1016/j.eti.2020.101351

LOICK, N.; HOBBS, P. J.; HALE, M. D.; JONES, D. L. Bioremediation of poly-aromatic hydrocarbon (PAH)-contaminated soil by composting. Critical Reviews in Environmental Science and Technology, v. 39, n. 4, p. 271-332, 2009. https://doi.org/10.1080/10643380701413682

MALDONADO-CHÁVEZ, E.; RIVERA-CRUZ, M. C.; IZQUIERDO-REYES, F. PALMA-LÓPEZ, D. J. Effects of rhizosphere, microorganisms, and fertilization in the bioremediation and phytoremediation of soils with new and weathered crude oils. University and Science, v. 26, n. 2, p. 121-136, 2010.

MANGLA, H.; SHARMA, H.; DAVE, S. SUDAN, J.; PATHAK, H. Microbial mechanism of petroleum hydrocarbons degradation: An Environmental perspective. Applied Environmental Biotechnology, v. 6, n. 2, p. 32-42, 2021. https://doi.org/10.26789/AEB.2021.02.005

MAREK, S.; MAGDALENA, J. ROMAN, Z. In-Vessel composting for utilizing of municipal sewage sludge. Applied Energy, v. 75, n. 3-4, p. 249-256, 2003. https://doi.org/10.1016/S0306-2619(03)00038-2

MARÍN, J. A.; MORENO, J. L. HERNÁNDEZ, T. GARCÍA, C. Bioremediation by composting of heavy oil refinery sludge in semiarid conditions. Biodegradation, v. 17, p. 251-261, 2006. https://doi.org/10.1007/s10532-005-5020-2

MOHANTY, G.; MUKHERJI, S. Biodegradation rate of diesel range n-alkanes by bacterial cultures Exiguobacterium aurantiacum and Burkholderia cepacia. International Biodeterioration & Biodegradation, v. 61, n. 3, p. 240-250, 2008. https://doi.org/10.1016/j.ibiod.2007.06.011

OGBO, E. M. Effects of diesel fuel contamination on seed germination of four crop plants: Arachis hypogala, Vigna unguiculata, Sorghum bicolor and Zea mays. African Journal of Biotechnology, v. 8, n. 2, p. 250-253, 2009.

OSINOWO, I.; ABIOYE, O. P.; OYEWOLE, O. A. OYELEKE, S. B. The bioremediation of diesel-contaminated soil using bacterial cocktail and organic nutrients. Journal of Microbiology, Biotechnology and Food Sciences, v. 10, n. 2, p. 150-158, 2020. https://doi.org/10.15414/jmbfs.2020.10.2.150-158

OSSAI, I. C.; AHMED, A.; HASSAN, A. HAMID, F. S. Remediation of soil and water contaminated with petroleum hydrocarbon: a review. Environmental Technology & Innovation, v.17, e100526, 2020. https://doi.org/10.1016/j.eti.2019.100526

RAHMAN, K. S. M.; BANAT, I. M.; THAHIRA, J.; THAYUMANAVAN, T.; LAKSHMANAPERUMALSAMY, P. Bioremediation of Gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith, and rhamnolipid biosurfactant. Bioresource Technology, v. 81, n. 1, p. 25-32, 2002. https://doi.org/10.1016/S0960-8524(01)00105-5

SHIN, H. Determination of MTBE, TBA, and BTEX in Soil by Headspace Gas Chromatography-Mass Spectrometry. Bulletin of The Korean Chemical Society, v. 33, p. 1693-1698, 2012. https://doi.org/10.5012/bkcs.2012.33.5.1693

SINGH, P.; JAIN, R., SRIVASTAVA, N.; BORTHAKUR, A.; PAL, D.; SINGH, R.; MADHAV, S.; SRIVASTAVA, P.; TIWARY, D.; MISHRA, P.K. Current and emerging trends in bioremediation of petrochemical waste: a review. Critical Reviews in Environmental Science and Technology, v. 47, n. 3, p. 155-201, 2017. http://dx.doi.org/10.1080/10643389.2017.1318616

SOLANAS, A. M.; RIERA, M.; VIDAL, G. Guide to bioremediation of soils contaminated by petroleum hydrocarbons. University of Barcelona: Ed. Agènciad Residus de Catalunya, 2009. 127p.

SUDHIR, S. H.; JAI, G.; DINESH, M. Hydrocarbon bioremediation efficiency by five indigenous bacterial strains isolated from contaminated soils. International Journal of Current Microbiology and Applied Sciences, v. 4, n. 3, p. 892-905, 2014.

TIQUIA, S. M.; TAM, N. F. Y.; HODGKIS, I. J. Effect of composting on phytotoxicity of spent pig-manure sawdust litter. Environmental Pollution, v. 93, n. 3, p. 249-256, 1996. https://doi.org/10.1016/S0269-7491(96)00052-8

TRAN, H-T.; LIN, C.; BUI, X-T.; NGO, H. H.; CHERUIYOT, N. K.; HOANG, H-G.; VU, C-T. Aerobic composting remediation of petroleum hydrocarbon-contaminated soil. Current and Future Perspectives. Sci of The Total Environment, v. 753, e142250, 2021. https://doi.org/10.1016/j.scitotenv.2020.142250

UDOINYANG, U.; EDEM, D. AKABIO, J. H. U. Petroleum hydrocarbon contents in tropical soils near crude oil exploration and processing site in Niger Delta, Nigeria. Journal of Environmental Science: Current Research, v. 2, e7, 2019. https://doi.org/10.24966/ESCR-5020/100007

WEI, Y.; LI, J.; SHI, D.; LIU, G.; ZHAO, Y.; SHIMAOKA, T. Environmental challenges impeding the composting of biodegradable municipal solid waste: A critical review. Resources, Conservation and Recycling, v. 122, p. 51-65, 2017. https://doi.org/10.1016/j.resconrec.2017.01.024

WU, T.; XU, J.; XIE, W.; YAO, Z.; YANG, H.; SUN, C.; LI, X. Pseudomonas aeruginosa L10: A Hydrocarbon-degrading, biosurfactant-producing, and plant-growth-promoting endophytic bacterium isolated from a reed (Phragmites australis). Frontiers in Microbiology, v. 9, e1087, 2018. https://doi.org/10.3389/fmicb.2018.01087

YASEEN, M. M.; MERAH, M. H. M.; GHAZI, A. M. GC-Mass characterization of tomato ethyl acetate extract and its antibacterial and antioxidant properties. Nativa, v. 11, n. 4, p. 592-597, 2024. http://dx.doi.org/10. 31413/Nat.V11i4.16634

Downloads

Publicado

2024-06-10

Como Citar

Abbas, R. I., & Flayeh, H. M. (2024). ENHANCED BIOREMEDIATION OF DIESEL OIL CONTAMINANTS IN SOIL . Nativa, 12(2), 359–369. https://doi.org/10.31413/nat.v12i2.17526

Edição

Seção

Ciências Ambientais / Environmental Sciences