GC-MASS CHARACTERIZATION OF TOMATO ETHYL ACETATE EXTRACT AND ITS ANTIBACTERIAL AND ANTIOXIDANT PROPERTIES

Autores

DOI:

10.31413/nat.v11i4.16634

Palavras-chave:

natural compounds, bacterial strains, free radical, Gas Chromatography - Mass Spectrometry

Resumo

ABSTRACT: Tomatoes possess valuable medicinal properties with high lycopene and flavonoid content, recognized for diverse pharmacological impacts. The study aimed to evaluate the antibacterial and antioxidant traits of the ethyl acetate tomato extract while identifying its main components. The antioxidant potential was determined through the 2,2-diphenyl-1-picrylhydrazyl radical assay, while the antibacterial activity was evaluated using the agar well diffusion method. Additionally, the components present in the extract were explored through GC-Mass spectroscopy. The final extraction ratio was calculated at 31.38±0.76%. Over 25 individual compounds were discerned in the tomato extract, encompassing myricetin 50.7%, n-hexadecanoic acid 19.9%, salicylic acid 13.77%, octenyl succinic acid 1.58%, vanillic acid 1.41%, dimethyl benzene 1.02%, Iso-quercitrin 1.02%, Hexadecanol 0.85%, Nomane-a-tomatidine 0.77%, a-tocopherol 0.76%, Homoserine 0.76%, and other compounds in smaller quantities. The extract exhibited a broad spectrum of antibacterial activity against the tested bacterial strains (S. aureus and P. aeruginosa). Notably, S. aureus displayed higher susceptibility to the tomato diethyl acetate extract concentrations in the culture media than P. aeruginosa. The ethyl acetate tomato extract showcased distinct 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity. The results indicate that the tomato extract possesses significant antibacterial and antioxidant qualities, showing promise as a valuable source of natural compounds for new drug development.

Keywords: natural compounds; bacterial strains; free radical; Gas Chromatography - Mass Spectrometry.

 

Caracterização por espectroscopia de massa (GC) do extrato de acetato de etila de tomate e suas propriedades antibacterianas e antioxidantes

 

RESUMO: Os tomates possuem propriedades medicinais valiosas com alto teor de licopeno e flavonóides, reconhecidos por diversos impactos farmacológicos. O estudo teve como objetivo avaliar as características antibacterianas e antioxidantes do extrato de tomate com acetato de etila e identificar seus principais componentes. O potencial antioxidante foi determinado através do ensaio do radical 2,2-difenil-1-picrilhidrazila, enquanto a atividade antibacteriana foi avaliada pelo método de difusão em placas de ágar. Adicionalmente, os componentes presentes no extrato foram explorados através de espectroscopia GC-Mass. A taxa de extração final foi de 31,38±0,76%. Mais de 25 compostos individuais foram discernidos no extrato de tomate, abrangendo miricetina 50,7%, ácido n-hexadecanóico 19,9%, ácido salicílico 13,77%, ácido octenil succínico 1,58%, ácido vanílico 1,41%, dimetil benzeno 1,02%, iso-quercitrina 1,02%, Hexadecanol 0,85%, Nomane-a-tomatidina 0,77%, a-tocoferol 0,76%, Homoserina 0,76% e outros compostos em quantidades menores. O extrato exibiu amplo espectro de atividade antibacteriana contra as cepas bacterianas testadas (S. aureus e P. aeruginosa). Notavelmente, S. aureus apresentou maior suscetibilidade às concentrações de extrato de acetato de dietila de tomate no meio de cultura do que P. aeruginosa. O extrato de tomate com acetato de etila apresentou atividade distinta de eliminação de radicais livres 2,2-difenil-1-picrilhidrazil. Os resultados indicam que o extrato de tomate possui qualidades antibacterianas e antioxidantes significativas, mostrando-se promissor como uma fonte valiosa de compostos naturais para o desenvolvimento de novos medicamentos.

Palavras-chave: compostos naturais; cepas bacterianas; radicais livres; Cromatografia Gasosa - Espectrometria de Massa.

Referências

AGARWAL, S.; RAO, A. V. Tomato lycopene and its role in human health and chronic diseases. Canadian Medical Association Journal, v. 163, p. 739-744, 2000.

BAI, Y.; LINDHOUT, Y. Domestication and breeding of tomatoes: What have we gained and what have we gained in the future? Annals of Botany, v. 100, n. 5, p. 1085-1094, 2007. https://doi.org/10.1093/aob/mcm150

BARROS, M. E.; SCHOR, N.; BOIM, M. A. Effects of an aqueous extract from Phyllanthus niruri on calcium oxalate crystallization in vitro. Urology Research, v. 30, p. 374-379, 2003. https://doi.org/10.1007/s00240-002-0285-y

BLUM, A.; MONIR, M.; WIRSANSKY, I.; BEN-ARZI, S. The beneficial effects of tomatoes. European Journal of Internal Medicine, v. 16, p. 402- 404, 2005. https://doi.org/10.1016/j.ejim.2005.02.017

BUTELLI, E.; TITTA, L.; GIORGIO, M.; MOCK, H.-P.; MATROS, A.; PETEREK, S.; SCHIJLEN, E. G. W. M.; HALL, R. D.; BOVY, A. G.; LUO, J.; MARTIN, C. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nature Biotechnology, v. 26, p. 1301-1308, 2008. https://doi.org/10.1038/nbt.1506

CAVALIERE, C.; CAPRIOTTI, A.; LA BARBERA, G.; et al. Liquid Chromatographic Strategies for Separation of Bioactive Compounds in Food Matrices. Molecules, v. 23, n. 12, e3091, 2018. https://doi.org/10.3390/molecules23123091

CHORIANOPOULOS, N.; KALPOUTZAKIS, E.; ALIGIANNIS, N.; MITAKU, S.; NYCHAS, G.-J.; HAROUTOUNIAN, S. A. Essential oils of Satureja, Origanum, and Thymus species: chemical composition and antibacterial activities against foodborne pathogens. Journal of Agricultural and Food Chemistry, v. 52, p. 8261-8267, 2004. https://doi.org/10.1021/jf049113i

COLLINS, E. J.; BOWYER, C.; TSOUZA, A.; CHOPRA, M. Tomatoes: An Extensive Review of the Associated Health Impacts of Tomatoes and Factors That Can Affect Their Cultivation. Biology (Basel), v. 11, n. 2, e239, 2022. https://doi.org/10.3390/biology11020239

DOMÍNGUEZ, R.; GULLÓN, P.; PATEIRO, M.; MUNEKATA, P. E. S.; ZHANG, W.; LORENZO, J. M. Tomato as Potential Source of Natural Additives for Meat Industry. A Review. Antioxidants, v. 9, n. 1, e73, 2020. https://doi.org/10.3390/antiox9010073

EBRAHIMABADI, A. H.; EBRAHIMABADI, E. H.; DJAFARI-BIDGOLI, Z.; KASHI, F. J.; MAZOOCHI, A.; BATOOLI, H. Composition and antioxidant and antimicrobial activity of the essential oil and extracts of Stachys inflata Benth from Iran. Food Chemistry, v. 119, p. 452-458, 2010. https://doi.org/10.1016/j.foodchem.2009.06.037

HAROON, S. Extraction of lycopene from Tomato paste and its Immobilization for Controlled Release. 109p. Thesis [Masters of Science in Material and Processing Engineering] - University of Waikato, Hamilton, New Zealand, 2014.

KAVITHA, G.; KANIMOZHI, K.; PANNEERSELVAM, A. antimicrobial efficacy of lycopene compound against some pathogens. International Journal of Current Research, v. 9, n. 05, p. 50184-50186, 2017.

KAVITHA, M. P.; MAHESWARI, M. U.; KRISHNA, K.; BALAJI, G.; YUAVARAJ, R.; SACHIN, R.; KUMAR, S. K. Effect of weed management treatments on growth and yield of tomato.‏ Indian Journal of Weed Science, v. 53, n.1, p. 114-116, 2021. https://doi.org/10.5958/0974-8164.2021.00021.6.

KIM, D. S.; KWACK, Y.; LEE, J. H.; CHUN, C. Antimicrobial Activity of Various Parts of Tomato Plants Varied with Different Solvent Extracts. Plant Pathology Journal, v. 35, n. 2, p. 149-155, 2019. https://doi.org/10.5423/PPJ.OA.07.2018.0132

KOOHSARI, H.; ALANGI, S. Z.; PAYANDAN, E.; NASERI, H. Effects of Ethanolic and Aqueous Extracts of Propolis on the Microbial Load of Raw Milk. Biological Journal of Microorganism, v. 5, p. 24-34, 2021.

LI, N.; WU, X.; ZHUANG, W.; XIA, L.; CHEN, Y.; WU, C.; RAO, Z.; DU, L.; ZHAO, R.; YI, M.; WAN, Q.; ZHOU, Y. Tomato and lycopene and multiple health outcomes: umbrella review. Food Chemistry, v. 343, e128396, 2020. https://doi.org/10.1016/j.foodchem.2020.128396

MA, Y.; MA, J.; YANG, T.; CHENG, W.; LU, Y.; CAO, Y.; WANG, J.; FENG, S. Components, Antioxidant and Antibacterial Activity of Tomato Seed Oil. Food Science and Technology Research, v. 20, n. 1, p. 1-6, 2014. https://doi.org/10.3136/fstr.20.1

PARNELL, T. L.; SUSLOW, T. V.; HARRIS, L. J. Tomatoes: Safe Methods to Store, Preserve, and Enjoy. ANR Catalog. University of California: Division of Agriculture and Natural Resources, March 2004. https://doi.org/10.3733/ucanr.8116

PINELA, J.; OLIVEIRA, M. B. P. P.; FERREIRA, I. C. F. R. Bioactive compounds of tomatoes as health promoters. In Natural Bioactive Compounds from Fruits and Vegetables as Health Promoters Part II. Sharjah,UAE: Bentham Science Publishers, 2016. 48-91p. https://doi.org/10.2174/9781681082431116010006

QUINET, M.; ANGOSTO, T.; YUSTE-LISBONA, F. J.; BLANCHARD-GROS, R.; BIGOT, S.; MARTINEZ, J.-P.; LUTTS, S. New species of wild tomatoes (Solanum section Lycopersicon: Solanaceae) from northern Peru. Systematic Botany, v. 30, p. 424-434, 2005. https://doi.org/10.1600/0363644054223657

ROSA-MARTÍNEZ, E.; BOVY, A.; PLAZAS, M.; TIKUNOV, Y.; PROHENS, J.; PEREIRA-DIAS, L. Genetics and breeding of phenolic content in tomato, eggplant and pepper fruits. Frontiers in Plant Science, v. 14, p. 1135237, 2023. https://doi.org/10.3389/fpls.2023.1135237

SAUCEDA, A. E. Q.; SÁYAGO-AYERDI, S. G.; AYALA-ZAVALA, J. F.; WALL-MEDRANO, A.; DE LA ROSA, L. A.; GONZÁLEZ-AGUILAR, G. A.; ÁLVAREZ-PARRILLA, E. Biological Actions of Phenolic Compounds. Fruit and Vegetable Phytochemicals, 125-138, 2017. https://doi.org/10.1002/9781119158042.ch6

TAVEIRA, M.; SILVA, L. R.; VALE-SILVA, L. A.; PINTO, E.; VALENTÃO, P.; FERRERES, F.; PINHO, P. G. de; ANDRADE, P. B. Lycopersicon esculentum Seeds: An industrial byproduct as an antimicrobial agent. Journal of Agricultural and Food Chemistry, v. 58, n. 17, p. 9529-9536, 2010. https://doi.org/10.1021/jf102215g

TEPE, B.; SOKMEN, M.; AKPULAT, H. A.; SOKMEN, A. In vitro antioxidant activities of the methanol extracts of five Allium species from Turkey. Food Chemistry, v. 92, p. 89-92, 2005. https://doi.org/10.1016/j.foodchem.2004.07.016

VIEITEZ, I.; MACEIRAS, L.; JACHMANIÁN, I.; ALBORÉS, S. Antioxidant and antibacterial activity of different extracts from herbs obtained by maceration or supercritical technology. The Journal of Supercritical Fluids, v. 133, p. 58-64, 2018. https://doi.org/10.1016/j.supflu.2017.09.025

Downloads

Publicado

2024-02-06

Como Citar

Yaseen, M. M., Merah, M. H. M., & Ghazi, A. M. (2024). GC-MASS CHARACTERIZATION OF TOMATO ETHYL ACETATE EXTRACT AND ITS ANTIBACTERIAL AND ANTIOXIDANT PROPERTIES. Nativa, 11(4), 592–597. https://doi.org/10.31413/nat.v11i4.16634

Edição

Seção

Bioprospecção e Biotecnologia / Bioprospecting and Biotechnology