INVESTIGATION AND IDENTIFICATION OF SOME ACTIVE BIOCHEMICAL IN MEDICAL PLANTS AGAINST CYP51 PROTEIN IN CANDIDA BY USING MOLECULAR DOCKING

Autores

DOI:

10.31413/nat.v11i3.16148

Palavras-chave:

molecular docking, medical plants, Candida sp

Resumo

ABSTRACT: Common and medical plants were investigated for active biochemical to bind and inhibit the CYP51 protein in candida sp., 22 important plants were chosen and 263 molecular docking reactions were done between active materials and protein, 1441 different active ligands were detected for binding in protein active site, the best 225 ligands were chosen depending the power of affinity bond. Four ligands were candidates for having the best ligand affinity bond and more safety for use according to the toxicity test program; within these ligands, the Epicatechin was found to be the best biochemical for inhibition and bonding to CYP51 protein as it subjects to Lipinski's rule of five.

Keywords: molecular docking; medical plants; Candida sp.

 

Investigação e identificação de alguns bioquímicos ativos em plantas medicinais contra a proteína CYP51 em candida usando Molecular Docking

 

RESUMO: Plantas comuns e medicinais foram investigadas para bioquímicos ativos para ligar e inibir a proteína CYP51 em Candida sp., 22 plantas importantes foram escolhidas e 263 reações de docking molecular foram feitas entre materiais ativos e proteínas, 1441 ligantes ativos diferentes foram detectados para ligação em proteínas sítio ativo, o melhor ligante 225 foi escolhido dependendo do poder de ligação de afinidade. Quatro ligantes foram candidatos por ter melhor ligação por afinidade e maior segurança para uso de acordo com o programa de testes de toxicidade, dentro destes ligantes a Epicatequina mostrou ser o melhor bioquímico para inibição e ligação à proteína CYP51 por estar sujeita à regra dos cinco de Lipinski.

Palavras-chave: docking molecular; plantas medicinais; Candida sp.

Referências

ABBAS, S. R.; KHAN, R. T.; SHAFIQUE, S.; MUMTAZ, S.; KHAN, A. A.; KHAN, A. M.; HASSAN, Z.; HUSSAIN, S. A.; ABBAS, S.; ABBAS, M. R.; BATOOL, A.; SAFDER, M. A. Study of resveratrol against bone loss by using in-silico and in-vitro methods. Brazilian Journal of Biology, v. 83, e248024, 2023. https://doi.org/10.1590/1519-6984.248024

DAUSSIN, F. N.; HEYMAN, E.; BURELLE, Y. (2021). Effects of (−)-epicatechin on mitochondria. Nutrition Reviews, v. 79, n. 1, p. 25-41, 2021. https://doi.org/10.1093/nutrit/nuaa094

K

HELFAOUI, H.; HARKATI, D.; SALEH, B. A. Molecular docking, molecular dynamics simulations and reactivity, studies on approved drugs library targeting ACE2 and SARS-CoV-2 binding with ACE2. Journal of Biomolecular Structure and Dynamics, v. 39, n. 18, p. 7246-7262, 2021. https://doi.org/10.1080/07391102.2020.1803967

MCNUTT, A. T.; FRANCOEUR, P.; AGGARWAL, R.; MASUDA, T.; MELI, R.; RAGOZA, M.; SUNSERI, J.; KOES, D. R. GNINA 1.0: molecular docking with deep learning. Journal of Cheminformatics, v. 13, n. 1, e43, 2021. https://doi.org/10.1186/s13321-021-00522-2

MROCZYŃSKA, M.; BRILLOWSKA-DĄBROWSKA, A. Virulence of clinical candida isolates. Pathogens, v. 10, n. 4, e466, 2021. https://doi.org/10.3390/pathogens10040466

PIERANTONI, D. C.; CORTE, L.; CASADEVALL, A.; ROBERT, V.; CARDINALI, G.; TASCINI, C. How does temperature trigger biofilm adhesion and growth in Candida albicans and two non‐ Candida albicans Candida species? Mycoses, v. 64, n. 11, p. 1412-1421, 2021. https://doi.org/10.1111/myc.13291

SEIFZADEH, S.; AGHJEHGHESHLAGH, F. M.; ABDIBENEMAR, H.; SEIFDAVATI, J.; NAVIDSHAD, B. The effects of a medical plant mix and probiotic on performance and health status of suckling Holstein calves. Italian Journal of Animal Science, v. 16, n. 1, p. 44–51, 2017. https://doi.org/10.1080/1828051X.2016.1249421

SHI, N.; ZHENG, Q.; ZHANG, H. Molecular Dynamics investigations of binding mechanism for triazoles inhibitors to CYP51. Frontiers in Molecular Biosciences, v. 7, e586540, 2020. https://doi.org/10.3389/fmolb.2020.586540

ZHANG, Z.-W.; CONG, L.; PENG, R.; HAN, P.; MA, S.-R.; PAN, L.-B.; FU, J.; YU, H.; WANG, Y.; JIANG, J.-D. Transformation of berberine to its demethylated metabolites by the CYP51 enzyme in the gut microbiota. Journal of Pharmaceutical Analysis, v. 11, n. 5, p. 628-637. https://doi.org/10.1016/j.jpha.2020.10.001

Downloads

Publicado

2023-12-03

Como Citar

Al Ghazal, A. A. T., & Khalil, M. I. (2023). INVESTIGATION AND IDENTIFICATION OF SOME ACTIVE BIOCHEMICAL IN MEDICAL PLANTS AGAINST CYP51 PROTEIN IN CANDIDA BY USING MOLECULAR DOCKING. Nativa, 11(3), 444–447. https://doi.org/10.31413/nat.v11i3.16148

Edição

Seção

Bioprospecção e Biotecnologia / Bioprospecting and Biotechnology