EFFECT OF THE BALANCED AND NANO-COMPOSITE NPK FERTILIZER ON THE VITALITY OF THE EARTHWORM Octolasion cyanieum AND ITS EFFECT ON THE HISTOLOGICAL COMPOSITION OF THE MIDDLE OF THE BODY
DOI:
10.31413/nat.v11i2.15905Palavras-chave:
chemical fertilizer, nano fertilizer, earthworm vitalityResumo
ABSTRACT: This study was conducted to determine the effects of earthworm breeding O. cyanieum for 7, 14, 21, and 28 days in soil treated with concentrations of 800, 1000, 1500, and 2000 mg kg-1 of balanced NPK compound fertilizer and balanced NPK nano-compound fertilizer at concentrations of 30, 60, 120, and 240 mg kg-1, in addition to the control treatment. It was found that the weight and relative growth rate of earthworms decreased with increasing concentrations of fertilizers. The highest significant decrease in weight (0.257 g) and relative growth rate (40.34%) was observed at a concentration of 1500 mg kg-1 of balanced NPK compound fertilizer. Meanwhile, the highest decrease in worm weight (0.225 g) and relative growth rate (86.31%) was observed at a concentration of 240 mg kg-1 of balanced NPK nano-compound fertilizer. Fertilizers also affected the protein content in the earthworms, which differed significantly from the control treatment for both fertilizers. In addition, the fertilizers affect the histological structure of the body, with clear disruption in the epithelium of the body, layers of circular and longitudinal muscle, the lining of the intestine, especially the typhlosole.
Keywords: chemical fertilizer; nano fertilizer; earthworm vitality.
Efeito do fertilizante npk balanceado e nanocomposto na vitalidade da minhoca octolasion cyanieum e seu efeito na composição histológica do meio do corpo
RESUMO: Este estudo foi conduzido para determinar os efeitos da criação de minhocas O. cyanieum por 7, 14, 21 e 28 dias em solo tratado com concentrações de 800, 1000, 1500 e 2000 mg kg-1 de solo de fertilizante composto NPK balanceado (20-20-20) e fertilizante nanocomposto NPK balanceado (20-20-20) nas concentrações de 30, 60, 120 e 240 mg kg-1 de solo, além do tratamento testemunha. O estudo mostrou que os fertilizantes químicos tiveram impacto sobre a vitalidade dessas minhocas, pois o peso e a taxa de crescimento relativo das minhocas diminuíram com o aumento das concentrações de fertilizantes. A maior queda significativa no peso (0,257 g) e na taxa de crescimento relativo (40,34%) foi observada na concentração de 1500 mg kg-1 de solo do fertilizante composto NPK balanceado. Já a maior redução no peso (0,225 g) e na taxa de crescimento relativo (86,31%) da minhoca foi observada na concentração de 240 mg kg-1 de solo do fertilizante nanocomposto NPK balanceado. Além disso, os tratamentos acima tiveram impacto no teor de proteína dos corpos das minhocas, que diferiu significativamente do tratamento controle, para ambos os tipos de fertilizantes. O estudo mostrou o impacto do fertilizante nas estruturas dos tecidos das minhocas, com clara ruptura na camada da pele e nas camadas musculares circulares e longitudinais abaixo dela, bem como um claro efeito no revestimento intestinal, especialmente o tiflosole.
Palavras-chave: fertilizante químico; nano fertilizante; vitalidade da minhoca.
Referências
ADEEL, M.; SHAKOOR, N.; HUSSAIN, T.; AZEEM, I.; ZHOU, P.; ZHANG, P.; RUI, Y. Bio-interaction of nano and bulk lanthanum and ytterbium oxides in soil system: Biochemical, genetic, and histopathological effects on Eisenia fetida. Journal of Hazardous Materials, v. 415, e125574, 2021. https://doi.org/10.1016/j.jhazmat.2021.125574
AL-HUSSEIN, A.; AL-SAFFAWI, A. Y. T.; AL-SHAKER, Y. M. S. Possible human health risks of nitrates in drinking water.: a case study of groundwater in Wana District, northern Iraq. Nativa, v. 11, n. 2, p. 185-191, 2023. https://doi.org/10.31413/nativa.v11i2.15742
AL-MALIKI, S.; AL-TAEY, D. K.; AL-MAMMORI, H. Z. Earthworms and eco-consequences: considerations to soil biological indicators and plant function: a review. Acta Ecologica Sinica, v. 41, n. 6, p. 512-523, 2021. https://doi.org/10.1016/j.chnaes.2021.02.003
AL-ZUBAIDY, K. M. D.; AL-FALAHY, M. A. H. Principles and procedures of statistics and experimental designs. Duhok University publication, 2016. 396p.
ANTUNES, L. F. de S.; SOUZA, R. G. de; KRAHENBUHL, J. de L.; DIAS, G. R.; SILVA, D. G. da; CORREIA, M. E. F. Eficiência de gongocompostos obtidos a partir de diferentes resíduos vegetais e sistemas de produção no desenvolvimento de mudas de alface. Nativa, v. 9, n. 2, p. 147-156, 2021. https://doi.org/10.31413/nativa.v9i2.9432
ASLAM, Z.; AHMAD, A.; IBRAHIM, M.; IQBAL, N.; IDREES, M.; ALI, A.; RAMZAN, H. N. Microbial enrichment of vermicompost through earthworm Eisenia fetida (Savigny, 1926) for agricultural waste management and development of useful organic fertilizer. Pakistan Journal of Agricultural Sciences, v. 8, p. 851-861, 2021. https://doi.org/10.21162/PAKJAS/21.1378
CULLING, C. F. A.; ALLISCN, R. T.; BARR, W. T. Cellular pathology technique. 4th ed. London. Sw15: Mid-Country Press, 1985. p. 159-295. https://doi.org/10.1016/C2013-0-06260-3
DHANANJAYAN, V.; JAYANTHI, P.; JAYAKUMAR, S.; RAVICHANDRAN, B. Agrochemicals impact on ecosystem and bio-monitoring. In: KUMAR, S.; MEENA, R. S.; JHARIYA, M. K. (Eds) Resources Use Efficiency in Agriculture. Singapore: Springer, 2020. p. 349-388. https://doi.org/10.1007/978-981-15-6953-1_11
GARCZYŃSKA, M; PĄCZKA, G; PODOLAK, A; MAZUR-PĄCZKA, A; SZURA, R; BUTT, KR; AND KOSTECKA, J. Effects of Owinema bio-preparation on vermicomposting in earthworm ecological boxes. Applied Sciences, v. 10, n. 2, e456, 2020. https://doi.org/10.3390/app10020456
GARG, Y. K.; CHAND, S. A.; CHHILAR, A. A.; YADAV, A. Growth and reproduction of Eisenia fetida in Various animal Wastes during Vermicomposting. Applied Ecology and Environmental Research, v. 3, n. 2, p. 51-59, 2005. http://dx.doi.org/10.15666/aeer/0302_051059
GHOSH, S. Environmental pollutants, pathogens and immune system in earthworms. Environmental Science and Pollution Research, v. 25, n. 7, p. 6196-6208, 2018. https://doi.org/10.1007/s11356-017-1167-8
GUNAWARDENA, U. A. D. P. Soil degradation: causes, consequences, and analytical tools. In: PANWAR, P.; SHUKLA, G.; BHAT, J. A.; CHAKRAVARTY, S. (Eds) Land Degradation Neutrality: achieving SDG 15 by forest management. Singapore: Springer, 2022. https://doi.org/10.1007/978-981-19-5478-8_9
HUANG, C.; GE, Y.; SHEN, Z.; WANG, K.; YUE, S.; QIAO, Y. Reveal the metal handling and resistance of earthworm Metaphire californica with different exposure history through toxicokinetic modeling. Environmental Pollution, v. 289, e117954, 2021. https://doi.org/10.1016/j.envpol.2021.117954
KALE, R. D.; KARMEGAM, N. The role of earthworms in tropics with emphasis on Indian ecosystems. Applied and Environmental Soil Science, v. 2010, p. 1-16, 2010. https://doi.org/10.1155/2010/414356
LAHIVE, E.; JURKSCHAT, K.; SHAW, B. J.; HANDY, R. D.; SPURGEON, D. J.; SVENDSEN, C. Toxicity of cerium oxide nanoparticles to the earthworm Eisenia fetida: subtle effects. Environmental Chemistry, v. 11, n. 3, p. 268-278, 2014. https://doi.org/10.1071/EN14028
LONG, W.; ANSARI, A.; SEECHARRAN, D. The effect of urea on epigeic earthworm species (Eisenia foetida). Cell Biology and Development, v. 1, n. 2, p. 46-50, 2017. https://doi.org/10.13057/cellbioldev/v010202
LOWRY, O. H.; ROSEBROUGH, N. J.; FARR, A. L.; RANDALL, R. J. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, v. 193, p. 265-275, 1951. https://doi.org/10.1016/S0021-9258(19)52451-6
LUAN, L.; JIANG, Y.; CHENG, M.; DINI-ANDREOTE, F.; SUI, Y.; XU, Q.; SUN, B. Organism body size structures the soil microbial and nematode community assembly at a continental and global scale. Nature Communications, v. 11, n. 1, e6406, 2020. https://doi.org/10.1038/s41467-020-20271-4
LUNA. L. G. Manual of histologic staining methods of the Armed forces Institute of pathology. National Agricultural Library, 1968. 258p. Available on: https://worldcat.org/en/title/330784
MASIN, C.; RODRIGUEZ, A. R.; ZALAZAR, C.; GODOY, J. L. Approach to assess agroecosystem anthropic disturbance: Statistical monitoring based on earthworm populations and edaphic properties. Ecological Indicators, v. 111, e105984, 2020. https://doi.org/10.1016/j.ecolind.2019.105984
MEENA, H.; MEENA, R. S.; RAJPUT, B. S.; KUMAR, S. Response of bio-regulators to morphology and yield of clusterbean [Cyamopsis tetragonoloba (L.) Taub.] under different sowing environments. Journal of Applied and Natural Science, v. 8, n. 2, p. 715-718, 2016. https://doi.org/10.31018/jans.v8i2.863
MIGLANI, R.; BISHT, S. S. World of earthworms with pesticides and insecticides. Interdisciplinary Toxicology, v. 12, n. 2, e71, 2019. https://doi.org/10.2478%2Fintox-2019-0008
MOSLEH, Y. Y.; PARIS-PALACIOS, S.; COUDERCHET, M.; VERNET, G. Effects of the herbicide isoproturon on survival, growth rate, and protein content of mature earthworms (Lumbricus terrestris L.) and its fate in the soil. Applied Soil Ecology, v. 23, n. 1, p. 69-77, 2003. https://doi.org/10.1016/S0929-1393(02)00161-0
PIEARCE, TG; OATES, K; AND CARRUTHERS, WJ. A fossil earthworm embryo (Oligochaeta) from beneath a Late Bronze Age midden at Potterne, Wiltshire, UK. Journal of Zoology, v. 220, n. 4, p. 537-542, 1990. https://doi.org/10.1111/j.1469-7998.1990.tb04732.x
PODOLAK, A.; KOSTECKA, J.; MAZUR-PĄCZKA, A.; GARCZYŃSKA, M.; PĄCZKA, G.; SZURA, R. Life cycle of the Eisenia fetida and Dendrobaena veneta earthworms (Oligohaeta, Lumbricidae). Journal of Ecological Engineering, v. 21, n. 1, p. 40-45, 2020. http://dx.doi.org/10.12911/22998993/113410
QIAO, Z.; ZHANG, F.; YAO, X.; YU, H.; SUN, S.; LI, X.; JIANG, X. Growth, DNA damage and biochemical toxicity of cyantraniliprole in earthworms (Eisenia fetida). Chemosphere, v. 236, e124328, 2019. https://doi.org/10.1016/j.chemosphere.2019.07.059
RAI, N.; ASHIYA, P.; RATHORE, D. S. Comparative study of the effect of chemical fertilizers and organic fertilizers on Eisenia foetida. International Journal of Innovative Research in Science, v. 3, n. 5, p. 12991-12998, 2014.
RIBERA, D.; NARBONNE, J. F.; ARNAUD, C.; SAINT-DENIS, M. Biochemical responses of the earthworm Eisenia fetida andrei exposed to contaminated artificial soil, effects of carbaryl. Soil Biology and Biochemistry, v. 33, n. 7-8, p. 1123-1130, 2001. https://doi.org/10.1016/S0038-0717(01)00035-9
SENA, L. M., DE ARRUDA, J. F., DE BRITO, P. O. B., DA SILVA COSTA, F. R., FILHO, R. A. P., & GONDIM, F. A. Cultivo de plantas erythrina velutina em substrato contendo vermicomposto. Nativa, v. 9, n. 3, p. 247–252, 2021. https://doi.org/10.31413/nativa.v9i3.10141
SAMAL, S.; SAHOO, S.; MISHRA, C. S. K. Morpho-histological and enzymatic alterations in earthworms Drawida willsi and Lampito mauritii exposed to urea, phosphogypsum and paper mill sludge. Chemistry and Ecology, v. 33, n. 8, p. 762-776, 2017. https://doi.org/10.1080/02757540.2017.1357700
SCHACHTERLE, G. R.; POLLACK, R. L. A simplified method for the quantitative assay of small amounts of protein in biological material. Analytical Biochemistry, v. 51, n. 2, p. 654-655, 1973. https://doi.org/10.1016/0003-2697(73)90523-X
SCHNUG, L.; JAKOB, L.; HARTNIK, T. The toxicity of a ternary biocide mixture to two consecutive earthworm (Eisenia fetida) generations. Environmental Toxicology and Chemistry, v. 32, n. 4, p. 937-947, 2013. https://doi.org/10.1002/etc.2142
SOGBESAN, O. A.; UGWUMBA, A. A. A. Effect of different substrates on growth and productivity of Nigeria semi-arid zone earthworm (Hyperiodrilus euryaulos, Clausen, 1842) (Oligochaeta: Eudrilinae). World Journal of Zoology, v. 1, n. 2, p. 103-112, 2006. http://www.idosi.org/wjz/wjz1(2)2006/6.pdf
STALEY, C.; BREUILLIN-SESSOMS, F.; WANG, P.; KAISER, T.; VENTEREA, R. T.; SADOWSKY, M. J. Urea Amendment Decreases Microbial Diversity and Selects for Specific Nitrifying Strains in Eight Contrasting Agricultural Soils. Frontiers in Microbiology, v. 9, e634, 2018. https://doi.org/10.3389/fmicb.2018.00634
WANG, G.; XIA, X.; YANG, J.; TARIQ, M.; ZHAO, J.; ZHANG, M.; HUANG, K.; LIN, K.; ZHANG, W. Exploring the bioavailability of nickel in a soil system: physiological and histopathological toxicity study to the earthworms (Eisenia fetida). Journal of Hazardous Materials, v. 383, e121169, 2020. https://doi.org/10.1016/j.jhazmat.2019.121169
YAN, X.; WANG, J.; ZHU, L.; WANG, J.; LI, S.; KIM, Y. M. Oxidative stress, growth inhibition, and DNA damage in earthworms induced by the combined pollution of typical neonicotinoid insecticides and heavy metals. Science of the Total Environment, v. 754, e141873, 2021. https://doi.org/10.1016/j.scitotenv.2020.141873
ŽALTAUSKAITĖ, J.; KNIUIPYTĖ, I.; KUGELYTĖ, R. Lead impact on the earthworm Eisenia fetida and earthworm recovery after exposure. Water, Air, & Soil Pollution, v. 231, p. 1-8, 2020. https://doi.org/10.1007/s11270-020-4428-y
ZHANG, S.; REN, S.; PEI, L.; SUN, Y.; WANG, F. Ecotoxicological effects of polyethylene microplastics and ZnO nanoparticles on earthworm Eisenia fetida. Applied Soil Ecology, v. 176, e104469, 2022. https://doi.org/10.1016/j.apsoil.2022.104469
Downloads
Publicado
Versões
- 2024-06-11 (2)
- 2023-08-17 (1)
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Nativa
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Direitos Autorais para artigos publicados nesta revista são do autor, com direitos de primeira publicação para a revista. Em virtude de a aparecerem nesta revista de acesso público, os artigos são de uso gratuito, com atribuições próprias, em aplicações educacionais e não-comerciais.
A artigos publicados nessa revista, podem ser reproduzidos parcialmente ou utilizados como referência por outros autores, desde que seja cita a fonte, ou seja, a Revista Nativa.
Copyright for articles published in this journal are the authors, with first publication rights granted to the journal. The journal shows open access, and articles are free to use, with proper attribution, in educational and non-commercial.
The articles published in this journal may be reproduced in part or used as a reference by other authors, provided that the source is quoted.