THE EFFECT OF SEASONAL TEMPERATURES ON THE LEVELS OF AIR POLLUTANTS IN RURAL AND URBAN AREAS IN IRAQ

Autores

DOI:

10.31413/nat.v11i2.15801

Palavras-chave:

air pollution, CO compounds, air temperature

Resumo

ABSTRACT: Iraq is one of the regions most affected by climate change around the world. These multidimensional effects of climate and pollution must be taken into consideration when estimating both climate and air pollution-related impacts, in order to develop appropriate health policies and measures to address both current and future climate and pollution challenges. The study was conducted in the Iraqi governorate of Salah al-Din, during the fall, winter and spring seasons of the year 2021-2022, with the aim of evaluating the level of pollutants in the atmospheric air for three regions: Abotuama rural area, Baiji oil refinery and the city of Tikrit.  The concentrations of each of the toxic gases were measured: SO2, NO, NO2, HCL, HF, TVOC, CO2 and CO, as well as temperatures. Significant differences were found between the study locations and seasons for all the variables that were tested, as Baiji refinery recorded the highest concentrations of SO2, NO, NO2, HCL, FH and TVOC at 3.5 ppm, 10.78 ppm, 7.475 ppm, 13.1 ppm, 0.8 mg m-3 and 15.25 ppm, respectively. The site of Tikrit recorded the highest concentrations of CO2 and CO, which were 1016 ppm and 29.85 mg m-3, respectively. While the spring season recorded the highest concentrations of SO2, HCL, TVOC and CO compounds, followed by the winter season of NO2, FH and TVOC compounds, the temperature rates were identical in the three study sites and during the fall, winter and spring seasons, reaching 30.25, 12.5 and 31 ˚C during the three seasons, respectively. The results of analyzing the relationship between temperature and pollutant concentrations showed that SO2, NO, HCl, and CO increase in hot seasons, while NO2, HF, TVOC, and CO2 pollutant concentrations increase during cold seasons.

Keywords: air pollution; CO compounds; air temperature.

 

Efeito das temperaturas sazonais nos níveis de poluentes atmosféricos em áreas rural e urbana, no Iraque

 

RESUMO: O Iraque é uma das regiões mais afetadas pelas mudanças climáticas em todo o mundo. Os efeitos multidimensionais do clima e da poluição devem ser levados em consideração ao estimar os impactos climáticos e suas relações com a poluição do ar, a fim de desenvolver políticas e medidas de saúde apropriadas para enfrentar os desafios atuais e futuros do clima e da poluição. O estudo foi realizado na província iraquiana de Salah al-Din, durante as estações de outono, inverno e primavera do ano 2021-2022. Objetivou-se avaliar o nível de poluentes no ar atmosférico de três regiões: área rural de Abotuama, a refinaria de petróleo de Baiji e a cidade de Tikrit. Foram avaliadas as concentrações dos seguintes gases tóxicos: SO2, NO, NO2, HCL, HF, TVOC, CO2 e CO, em conjunto com as temperaturas do ar. Foram encontradas diferenças significativas entre os locais de estudo e as estações para todas as variáveis testadas, pois a refinaria de Baiji registrou as maiores concentrações de SO2, NO, NO2, HCL, FH e TVOC, equivalentes a 3,5 ppm, 10,78 ppm, 7,475 ppm, 13,1 ppm, 0,8 mg m-3 e 15,25 ppm, respectivamente. A cidade de Tikrit registrou as maiores concentrações de CO2 e CO, sendo de 1016 ppm e 29,85 mg m-3, respectivamente. Enquanto, que na estação da primavera foram registradas as maiores concentrações dos compostos SO2, HCL, TVOC e CO, seguida pela estação do inverno dos compostos NO2, FH e TVOC. As taxas de temperature do ar foram idênticas nos três locais de estudo e durante as estações de outono, inverno e primavera, atingindo 30,25, 12,5 e 31,0 ˚C durante as três estações, respectivamente. Os resultados da análise da relação entre a temperatura do ar e as concentrações de poluentes mostraram que SO2, NO, HCl e CO aumentam nas estações quentes, enquanto as concentrações dos poluentes NO2, HF, TVOC e CO2 aumentam nas estações frias.

Palavras-chave: poluição do ar; compostos de CO; temperatura do ar.

Referências

ABASS, M.; ZIBOON, A. T.; BAHAA, Z. Assessment of air pollution in AL-Nahrawan Suburban-Baghdad city by Geographic Information System (GIS). Engineering and Technology Journal, v. 34, n. 11, p. 1955-1969, 2016. https://doi.org/10.30684/etj.34.11A.4

ABDUL-WAHAB, S.; FADLALLAH, S.; AL-RASHDI, M. Evaluation of the impact of ground-level concentrations of SO2, NOx, CO, and PM10 emitted from a steel melting plant on Muscat, Oman. Sustainable Cities and Society, v. 38, p. 675-683, 2018. https://doi.org/10.1016/j.scs.2018.01.048

AL-ZUBAIDY, K. M. D.; ALJIBOURI, K. K. A. Biostatistics. Ministry of higher education and scientific research. First Edition. University of Kirkuk, Iraq, 2022. 476p.

AL-ZUBAIDY, K. M. D.; AL-FALAHY, M. A. H. Principles and procedures of statistics and experimental designs. Duhok University publication, 2016. 396p.

ANENBERG, S. C.; HAINES, S.; WANG, E.; NASSIKAS, N.; KINNEY, P. L. Synergistic health effects of air pollution, temperature, and pollen exposure: a systematic review of epidemiological evidence. Environmental Health, v. 19, p. 1-19, 2020.‏ https://doi.org/10.1186/s12940-020-00681-z

ARGACHA, J. F.; COLLART, P.; WAUTERS, A.; KAYAERT, P.; LOCHY, S.; SCHOORS, D. Air pollution and ST-elevation myocardial infarction: a case-crossover study of the Belgian STEMI registry 2009-2013. International Journal of Cardiology, v. 223, p. 300-305, 2016. https://doi.org/10.1016/j.ijcard.2016.07.191

AZIZ, A.; MAQSOOD, H.; KAPUR, S. Cost-Effective technologies for control of air pollution and atmospheric-related extremes. In: SAXENA, P.; SHUKLA, A.; GUPTA, A. K. (Eds) Extremes in atmospheric processes and phenomenon: assessment, impacts and mitigation. Disaster Resilience and Green Growth. Singapore: Springer, 2022. p. 349-368. https://doi.org/10.1007/978-981-16-7727-4_15

BHUYAN, M.; ABID HUSAIN, S.; CHOWDHURY, E.; BAT, L. Assessment of carbon sequestration capacity of seaweed in climate change mitigation. Journal of Climate Change, v. 8, n.1, p. 1-8, 2022.‏ https://doi.org/10.3233/JCC220001

DUAN, Y.; LIAO, Y.; LI, H.; YAN, S.; ZHAO, Z.; YU, S.; FU, Y.; WANG, Z.; YIN, P.; CHENG, J.; JIANG, H. Effect of changes in season and temperature on cardiovascular mortality associated with nitrogen dioxide air pollution in Shenzhen, China. Science of the Total Environment, v. 697, e134051, 2019. https://doi.org/10.1016/j.scitotenv.2019.134051

FENG, F.; MA, Y.; ZHANG, Y.; SHEN, J.; WANG, H.; CHENG, B.; JIAO, H. Effects of extreme temperature on respiratory diseases in Lanzhou, a temperate climate city of China. Environmental Science and Pollution Research, v. 28, n. 35, p. 49278-49288, 2021.‏ https://doi.org/10.1007/s11356-021-14169-x

GAO, J.; KOVATS, S.; VARDOULAKIS, S.; WILKINSON, P.; WOODWARD, A.; LI, J.; LIU, Q. Public health co-benefits of greenhouse gas emissions reduction: A systematic review. Science of the Total Environment, v. 627, p. 388-402, 2018.‏ https://doi.org/10.1016/j.scitotenv.2018.01.193

LI, J.; WOODWARD, A.; HOU, X. Y.; ZHU, T.; ZHANG, J.; BROWN, H. Modification of the effects of air pollutants on mortality by temperature: a systematic review and meta-analysis. Science of the Total Environment, v. 575, p. 1556-1570, 2017. https://doi.org/10.1016/j.scitotenv.2016.10.070

LIAO, W., WU, L., ZHOU, S., WANG, X., & CHEN, D. Impact of synoptic weather types on ground-level ozone concentrations in Guangzhou, China. Asia-Pacific Journal of Atmospheric Sciences, 2021: 57: 169-180. ‏

LIU, H.; TIAN, Y.; XU, Y.; HUANG, Z.; HUANG, C.; HU, Y. Association between ambient air pollution and hospitalization for ischemic and hemorrhagic stroke in China: a multicity case-crossover study. Environmental Pollution, v. 230, p. 234-241, 2017. https://doi.org/10.1016/j.envpol.2017.06.057

MOHAMMADI, M.; HATAMI, M.; ESMAELI, R.; GOHARI, S.; MOHAMMADI, M.; KHAYAMI, E. Relationships between ambient air pollution, meteorological parameters and respiratory mortality in Mashhad, Iran: a time series analysis. Pollution, v. 8, n. 4, p. 1250-1265, 2022.‏ https://doi.org/10.22059/POLL.2022.341236.1431

NGUYEN, G. T. H.; SHIMADERA, H.; URANISHI, K.; MATSUO, T.; KONDO, A. Numerical assessment of PM2.5 and O3 air quality in continental Southeast Asia: Impacts of potential future climate change. Atmospheric Environment, v. 215, e116901, 2019.‏ https://doi.org/10.1016/j.atmosenv.2019.116901

QIU, H.; YU, I. T. S.; TSE, L. A.; CHAN, E. Y.; WONG, T. W.; TIAN, L. Greater temperature variation within a day associated with increased emergency hospital admissions for asthma. Science of the Total Environment, v. 505, p. 508-513, 2015.‏ https://doi.org/10.1016/j.scitotenv.2014.10.003

RODRIGUEZ, L.; MARTÍNEZ, B.; TUYA, F. Atlantic corals under climate change: modeling distribution shifts to predict richness, phylogenetic structure and trait-diversity changes. Biodiversity and Conservation, v. 28, p. 3873-3890, 2019.‏ https://doi.org/10.1007/s10531-019-01855-z

TOAMMA, D. M.; AL-MOSUWI, W. H. A. Air Pollution and Analysis of Hydrocarbon Levels Except for Methane NMHC in Basra Governorate (2015-2018). Al-Kunooze Scientific Journal, v. 4, n. 1, p.‏ 46-77, 2022. https://www.iasj.net/iasj/article/237722

TRINH, T. T.; TRINH, T. T.; LE, T. T.; NGUYEN, T. D. H.; TU, B. M. Temperature inversion and air pollution relationship, and its effects on human health in Hanoi City, Vietnam. Environmental Geochemistry and Health, v. 41, p. 929-937, 2019. https://doi.org/10.1007/s10653-018-0190-0

TRNKA, D. Policies, regulatory framework and enforcement for air quality management: The case of Korea.‏ OECD Environment Working Papers, 2020. (Paper No. 158)

ZHAO, Y.; HU, J.; TAN, Z.; LIU, T.; ZENG, W.; LI, X.; MA, W. Ambient carbon monoxide and increased risk of daily hospital outpatient visits for respiratory diseases in Dongguan, China. Science of the Total Environment, v. 668, p. 254-260, 2019. https://doi.org/10.1016/j.scitotenv.2019.02.333

Downloads

Publicado

2023-07-03

Como Citar

Alallawi, A. I., Al-Jubouri, K. I. K., & Hameed-Ameen, A. M. (2023). THE EFFECT OF SEASONAL TEMPERATURES ON THE LEVELS OF AIR POLLUTANTS IN RURAL AND URBAN AREAS IN IRAQ . Nativa, 11(2), 178–184. https://doi.org/10.31413/nat.v11i2.15801

Edição

Seção

Ciências Ambientais / Environmental Sciences