ACÚMULO DE MANGANÊS EM ESPOROS DE FUNGOS MICORRÍZICOS ARBUSCULARES E FAVORECIMENTO DO CRESCIMENTO INICIAL DE Mimosa caesalpiniifolia EM SOLO CONTAMINADO

Autores

DOI:

10.31413/nativa.v10i4.14367

Palavras-chave:

Contaminação, Estresse Metálico, Toxidez por Mn, Colonização Micorrízica, Biorremediação

Resumo

O manganês (Mn) é um micronutriente essencial para as plantas, porém, quando em excesso pode ser considerado potencialmente tóxico. Diante disso, objetivou-se avaliar o efeito de micorrizas arbusculares (MA) na promoção do crescimento de Mimosa caesalpiniifolia em um solo contaminado por Mn e utilizar a microscopia eletrônica de varredura (MEV) e espectroscopia de energia dispersiva (EDS) para investigar a capacidade de esporos de MA em acumular Mn. Para isso, em casa de vegetação, o solo foi contaminado com níveis crescentes de Mn (0, 100, 200, 400 mg kg-1). Nossos resultados mostraram que a inoculação com MA aumentou o crescimento das plantas, os teores de Mn nas raízes e diminuíram os teores de Mn na parte aérea das plantas em mais de 2800 mg kg-1. O maior percentual de colonização micorrízica (61,7%) foi observado na ausência de Mn. Também verificamos, por meio de MEV e EDS, que os esporos de MA acumulam Mn na sua superfície, o que pode ser considerado um mecanismo essencial para conferir tolerância à planta contra o excesso de Mn. Coletivamente, nosso estudo mostra que a inoculação de MA alivia o estresse de Mn e aumenta o crescimento de M. caesalpiniifolia.

Palavras-chave: contaminação; estresse metálico; toxidez por Mn; colonização micorrízica; biorremediação.

 

Manganese accumulation in arbuscular mycorrhizal fungi spores and furtherance of initial growth of Mimosa caesalpiniifolia in soil contaminated

 

ABSTRACT: Manganese (Mn) is an essential micronutrient for plants, however, when in excess it can be considered potentially toxic. Therefore, the objective was to evaluate the effect of arbuscular mycorrhizas (AM) in promoting the growth of Mimosa caesalpiniifolia in a soil contaminated by Mn and to use scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) to investigate the capacity of AM spores to accumulate Mn. For this, in a greenhouse, the soil was contaminated with increasing levels of Mn (0, 100, 200, 400 mg kg-1). Our results showed that inoculation with AM increased plant growth, Mn levels in roots and decreased Mn levels in shoots of plants by more than 2800 mg kg-1. The highest percentage of mycorrhizal colonization (61.7%) was observed in the absence of Mn. We also verified, through SEM and EDS, that AM spores accumulate Mn on the surface, which can be considered an essential mechanism to confer tolerance to the plant against excess Mn. Collectively, our study shows that AM inoculation alleviates Mn stress and increases the growth of M. caesalpiniifolia.

Keywords: contamination; metallic stress; Mn toxicity; mycorrhizal colonization; bioremediation.

Referências

ADEYEMI, N. O.; ATAYESE, M. O.; SAKARIYAWO, O. S.; AZEEZ, J. O.; SOBOWALE, P. A.; OLUBODE, A.; MUDATHIR, R.; ADEBAYO, R.; ADEOYE, S. Alleviation of heavy metal stress by arbuscular mycorrhizal symbiosis in Glycine max (L.) grown in copper, lead and zinc contaminated soils. Rhizosphere, v. 18, p. 1-8, 2021. http://dx.doi.org/10.1016/j.rhisph.2021.100325

ALVARES, C. A.; STAPE, J. L.; SENTELHAS, P. C.; GONÇALVES, J. L. M.; SPAROVEK, G. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, p. 711-728, 2013. https://doi.org/10.1127/0941-2948/2013/0507

CARNEIRO, M. A. C.; SIQUEIRA, J. O.; MOREIRA, F. M. S. Estabelecimento de plantas herbáceas em solo com contaminação de metais pesados e inoculação de fungos micorrízicos arbusculares. Pesquisa Agropecuária Brasileira, v. 36, p. 1443-1452, 2001. https://doi.org/10.1590/S0100-204X2001001200001

CEBALLOS-LAITA, L.; GUTIERREZ-CARBONELL, E.; IMAI, H.; ABADÍA, A.; UEMURA, M.; ABADÍA, J.; LÓPEZ-MILLÁN, A. F. Effects of manganese toxicity on the protein profile of tomato (Solanum lycopersicum) roots as revealed by two complementary proteomic approaches, two-dimensional electrophoresis and shotgun analysis. Journal of Proteomics, v. 185, p. 51-63, 2018. https://doi.org/10.1016/j.jprot.2018.06.016

CHRISTIE, P., LI, X., CHEN, B. Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant and Soil, v. 261, p. 209-217, 2004. https://doi.org/10.1023/B:PLSO.0000035542.79345.1b

FERREIRA, D. F. SISVAR: A computer statistical analysis system. Ciência e Agrotecnologia, v. 35, p.1039-1042, 2011. https://doi.org/10.1590/S1413-70542011000600001

FERROL, N.; TAMAYO, E.; VARGAS, P. The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. Journal of Experimental Botany, v. 67, p. 6253-6265, 2016. https://doi.org/10.1093/jxb/erw403

FERRONATO, N.; TORRETTA, V. Waste mismanagement in developing countries: A review of global issues. International Journal of Environmental Research and Public Health, v. 16, p. 1-28, 2019. https://doi.org/10.3390/ijerph16061060

GARCIA, K.G.V.; GOMES, V. F. F.; MENDES FILHO, P. F.; MARTINS, C. M.; SILVA JUNIOR, J. M. T.; CUNHA, C. S. M.; PINHEIRO, J. I. Arbuscular mycorrhizal fungi in the phytostabilization of soil degraded by manganese mining. Journal of Agricultural Science, v. 10, p. 192-202, 2018. https://doi.org/10.5539/jas.v10n12p192

GARCIA, K. G. V.; GOMES, V. F. F.; MENDES FILHO, P. F.; MARTINS, C. M.; ALMEIDA, A. M. M.; SILVA JUNIOR, J. M. T. Tolerância de Mimosa caesalpiniifolia Benth. associada a micorrizas arbusculares em substrato da mineração de manganês. Revista de Ciências Agrárias, v. 60, p. 247-255, 2017. http://dx.doi.org/10.4322/rca.2500

GARCIA, K. G. V.; MENDES FILHO, P. F.; PINHEIRO, J. I.; CARMO, J. F.; PEREIRA, A. P. A.; MARTINS, C. M.; ABREU, M. G. P.; OLIVEIRA FILHO, J. S. Attenuation of manganese-induced toxicity in Leucaena leucocephala colonized by arbuscular mycorrhizae. Water, Air, Soil & Pollution, v. 231, p.1-15, 2020. https://doi.org/10.1007/s11270-019-4381-9

GUPTA, S.; THOKCHOM, S. D.; KOUL, M.; KAPOOR, R. Arbuscular Mycorrhiza mediated mineral biofortification and arsenic toxicity mitigation in Triticum aestivum L. Plant Stress, v. 5, p. 1-13, 2022. http://dx.doi.org/10.1016/j.stress.2022.100086

HUANG, Y. L.; YANG, S.; LONG, G. X.; ZHAO, Z. K.; LI, X. F.; GU, M. H. Manganese toxicity in sugarcane plantlets grown on acidic soils of southern China. Plos One, v. 11, p.1-18, 2016. https://doi.org/10.1371/journal.pone.0148956

JIA, Y.; LI, X.; LIU, Q.; HU, X.; LI, J.; DONG, R.; LIU, P.; LIU, G. Physiological and transcriptomic analyses reveal the roles of secondary metabolism in the adaptive responses of Stylosanthes to manganese toxicity. BMC Genomics, v. 21, p. 3-17, 2020. https://doi.org/10.1186/s12864-020-07279-2

KABATA-PENDIAS, A. Trace elements in soils and plants (4th ed.). Boca Raton: CRC Press, 2010.

KOWITWIWAT, A.; SAMPANPANISH, P. Phytostabilization of arsenic and manganese in mine tailings using Pennisetum purpureum cv. Mott supplemented with cow manure and acacia wood-derived biochar. Heliyon, v. 6, p. 1-10, 2020. https://doi.org/10.1016/j.heliyon.2020.e04552

LI, J.; SUN, Y.; JIANG, X.; CHEN, B.; ZHANG, X. Arbuscular mycorrhizal fungi alleviate arsenic toxicity to Medicago sativa by influencing arsenic speciation and partitioning. Ecotoxicology and Environmental Safety, v. 157, p. 235-243, 2018. https://doi.org/10.1016/j.ecoenv.2018.03.073

LIU, D.; ZHENG, K.; WANG, Y.; ZHANG, Y.; LAO, R.; QIN, Z.; LI, T.; ZHAO, Z. Harnessing an arbuscular mycorrhizal fungus to improve the adaptability of a facultative metallophytic poplar (Populus yunnanensis) to cadmium stress: Physiological and molecular responses. Journal of Hazardous Materials, v. 424, p. 127430, 2022. https://doi.org/10.1016/j.jhazmat.2021.127430

PHILLIPS, J. M.; HAYMAN, D. S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, v. 55, p. 158-161, 1970. https://doi.org/10.1016/s0007-1536(70)80110-3

SMITH, S. E.; READ, D. J. Mycorrhizal Symbiosis, 2nd ed., Academic Press: London, 605 p., 1997.

SPAGNOLETTI, F.; CARMONA, M.; GÓMEZ, N. E. T.; CHIOCCHIO, V.; LAVADO, R. S. Arbuscular mycorrhiza reduces the negative effects of M. phaseolina on soybean plants in arsenic-contaminated soils. Applied Soil Ecology, v. 121, p. 41-47, 2017. https://doi.org/10.1016/j.apsoil.2017.09.019

TANG, T.; TAO, F.; LI, W. Characterisation of manganese toxicity tolerance in Arabis paniculata. Plant Diversity, v. 43, p. 163-172, 2020. https://doi.org/10.1016/j.pld.2020.07.002

TEIXEIRA, P. C. T.; DONAGEMMA, G. K.; FONTANA, A.; TEIXEIRA, W. G. Manual de Métodos de Análise de Solo (3rd ed. 576p). Brasília: Embrapa, 2017.

VODNIK, D.; GRČMAN, H.; MAČEK, I.; Van ELTEREN, J. T.; KOVAČEVIČ, M. The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Science of The Total Environment, v. 392, p. 130-136, 2007. https://doi.org/10.1016/j.scitotenv.2007.11.016

WANG, X.; LIANG, J.; LIU, Z.; KUANG, Y.; HAN, L.; CHEN, H.; XIE, X.; HU, W.; TANG, M. Transcriptional regulation of metal metabolism- and nutrient absorption-related genes in Eucalyptus grandis by arbuscular mycorrhizal fungi at different zinc concentrations. BMC Plant Biology, v. 22, n. 1, p. 1-20, 2022. http://dx.doi.org/10.1186/s12870-022-03456-5

YU, F., LIU, K., YE, P.; ZHOU, Z.; CHEN, C.; LI, Y. Manganese tolerance and accumulation characteristics of a woody accumulator Camellia oleifera. Environmental Science and Pollution Research, v. 26, p. 21329–21339, 2019. https://doi.org/10.1007/s11356-019-05459-6

Downloads

Publicado

2022-12-14 — Atualizado em 2023-11-27

Versões

Como Citar

Garcia, K. G. V., & Mendes Filho, P. F. (2023). ACÚMULO DE MANGANÊS EM ESPOROS DE FUNGOS MICORRÍZICOS ARBUSCULARES E FAVORECIMENTO DO CRESCIMENTO INICIAL DE Mimosa caesalpiniifolia EM SOLO CONTAMINADO. Nativa, 10(4), 533–538. https://doi.org/10.31413/nativa.v10i4.14367 (Original work published 14º de dezembro de 2022)

Edição

Seção

Agronomia / Agronomy
  • Citations
  • Scopus - Citation Indexes: 2
  • Captures
  • Mendeley - Readers: 3

Artigos mais lidos pelo mesmo(s) autor(es)